
 WORKING DRAFT 

 Page 1 

Science Based Nuclear Energy Systems Enabled by 
Advanced Modeling and Simulation at the Extreme Scale 

 

White Paper on Verification, Validation, and Uncertainty 
Quantification 

 

Richard I. Klein1 and Paul J. Turinsky2 

1 University of California, Berkeley Department of Astronomy and Lawrence 
Livermore National Laboratory 

 
2 North Carolina State University, Department of Nuclear Engineering 

 

 

 

Introduction 
 

The purpose of this White Paper is to provide a framework for understanding the role that 

Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk 

Quantification, collectively referred to as VU, is expected to play in modeling nuclear 

energy systems. First, we provide background for the modeling of nuclear energy based 

systems. We then move to a brief discussion that emphasizes the critical elements of 

V&V as applied to nuclear energy systems but is general enough to cover a broad 

spectrum of scientific and engineering disciplines that include but are not limited to 

astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical 

engineering, civil engineering, electrical engineering, and nuclear engineering material 

science, etc.  Finally, we discuss the critical issues and challenges that must be faced in 

the development of a viable and sustainable VU program in support of modeling nuclear 

energy systems. 

 

 

Background for Modeling Nuclear Energy Systems 
 
Nuclear energy systems and their associated fuel cycles involve complex, interacting 

subsystems whose modeling requires expertise that span many scientific and engineering 

disciplines. The key stages of a nuclear fuel cycle include mining and milling, 

conversion, enrichment, fuel fabrication, power production, temporary spent fuel storage, 

separations, and nuclear waste disposal. Whether the fuel cycle is open or closed, fuel 

type and reactor type will determine which of these stages come into play and the specific 
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nature of each stage. A heavy reliance on computational simulation of each of the fuel 

cycle stages has historically played a major role in the advancement of nuclear energy, in 

particular the stages of power production, separations and nuclear waste disposal. The 

validation of these computational simulations has been based upon an extensive array of 

experiments, ranging from basic physics experiments, e.g. nuclear data, to single effects 

experiments, to integral system level experiments. Collectively these experiments have 

cost tens of billions of dollars and been executed over several decades. However, there 

still remain gaps in the experimental basis in areas such as severe accidents and aging. 

 

Using the experimental base, it has been possible to improve simulation capabilities via 

model, numeric and input data enhancements. In more recent years, it has also been 

possible to estimate the uncertainties in best estimate predictions. This has been done by 

mathematically propagating the uncertainties in input data, initial conditions and sub-

models through simulators. This process has been accepted by the USNRC as indicated in 

the Code Scaling, Applicability and Uncertainty (CSAU) methodology. However, since 

current nuclear system simulation most times are not based upon micro-scale science 

based models but macro-scale models, i.e. heat transfer sub-model, the number of 

parameters for which uncertainties must be treated is limited, e.g. fifty. 

 

As simulation capability is developed to be more science based, a heavier reliance on 

micro-scale sub-models will evolve. Given that designers require macro-scale responses 

to make informed design decisions, this implies that increased usage of multiscale 

modeling will be necessary. Further, since nuclear energy systems like any complex 

system involves the interaction of many physical phenomena, tightly coupled, 

multiphysics modeling will also play a more significant role in the future. To support the 

development of multiphysics and multiscale modeling, new VU capabilities will be 

necessary. A portion of this new capability required will be possible based upon advances 

in computational power, but others will require advances in the mathematical and 

algorithmic foundations of VU. 

 

For nuclear energy systems, the motivation for completing VU is two fold. The obvious 

reason is to provide users of simulation packages confidence in the system responses 

predicted and knowledge of prediction uncertainties. However, for nuclear energy 

systems VU is also performed because it is required by the licensing body, specifically 

the US Nuclear Regulatory Commission, built upon the premise of an extensive 

experimental data base regarding system attributes of interest. 

 

VU has as its objective to be able to predict with confidence, using models captured in 

computer simulation, the best estimate values and their associated uncertainties of 

complex system attributes, accounting for all source of error and uncertainty, i.e. 

 

– modeling, 

– numerical treatment, 

– epistemic uncertainties (e.g. data including correlations),  

– aleatory uncertainties (random phenomena), and 



 WORKING DRAFT 

 Page 3 

– Initial, e.g. state condition, and boundary, e.g. domain decomposition, 

conditions. 

 

If this objective is satisfied, it will support the following favorable outcomes: 

 

• To make confident, risk-informed decisions when considering alternative designs 

and operations, and nuclear safety. 

• More specifically to support 

– the identification of code development needs, 

– the identification and design of required validation experiments, 

– design decision making in regard to managing margins, and 

– presenting the risk-informed safety case with the regulatory body. 

 

A challenge when VU is applied to nuclear systems is that it must be able to predict high-

impact consequences of low probability events with high confidence, factoring in aging 

effects, with limited experimental data at the macro-scale. This challenge is noted to be 

similar to that associated with nuclear weapons’ stewardship. 

 

Nuclear System Models’ Attributes 
 

Given the diversity between the stages of the nuclear fuel cycle, there is considerable 

diversity in the associated simulation models.  An example using the power production 

stage of the nuclear fuel cycle will serve to indicate the complexity of nuclear systems 

simulation models. To model a nuclear power plant, which includes the mechanical, 

electrical and nuclear components and systems, structures, and external environment, the 

following must be modeled: thermal-hydraulic behavior of fluid circuits including fluid-

structure interactions, thermal behaviors of components making up the system, material 

behaviors factoring in radiation, temperature, pressure, and chemistry effects, structural 

responses, instrumentation responses, control and protection systems logic, reactor 

physics and radiation fields. It is recognized that weak to strong coupling exists between 

these effects due to natural or engineered feedback effects. Today, with capabilities 

reflected in such simulation packages as TRACE, TRAC, RELAP and SASSYS codes, 

one is limited in not only modeling detail, but also the degree of coupling that can be 

represented. Introducing science-based multiphysics and multiscale modeling will only 

make these challenging modeling problem orders of magnitude more challenging with 

regard to best estimate calculations. 

 

 

Overview of Critical Elements of V&V and Uncertainty 
Quantification 
 

It is useful to state the definitions. 

Verification: Verification is the process of confirming that a computer code 

correctly implements the algorithms that were intended.  This is the process of 

confirming that the equations are numerically solved accurately. 
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Validation: Validation is the process of confirming that the predictions of a code 

adequately represent measured physical phenomena. This is the  process of 

confirming that the equations are (physically) accurate. 

    Verification 

Code verification is the most general component of V&V. It answers, or seeks to answer, 

three specific questions: (1) Are the equations represented by a code mathematically (not 

physically) correct? (2) Are the algorithms that provide the numerical solution of the 

mathematical equations themselves mathematically correct? (3) Is the software 

implementation of these algorithms correct (that is, free of faults)? 

It is useful to think about verification testing and test problems in three ways. The first of 

these is the structure of the chosen test problems, that is, the logical principles underlying 

them. This addresses the important question of why given test problems are chosen, and 

how they are organized.   

The second is the specific construction of the test suite, or the specific means chosen by 

the code team for populating the test problem suite. Finding or developing new test 

problems that fully address the complexities of multiphysics codes is a tremendous 

challenge. 

The third aspect of importance for verification test problems is that of assessment, 

specifically the criteria that are applied for deciding whether or not the code has passed or 

failed a given test problem. Verification test problems are intended to be strong tests of 

the code. Therefore, assessment must be objective and rigorous, and well-documented. 

     

    Solution Verification 

Solution verification is quantification of the numerical error in a presented calculation. 

This answers a direct question: What is the error in a given calculation? Unfortunately, 

this is all but impossible to perform completely and rigorously for complex calculations. 

However, it can be partially and practically addressed by explicit discretization 

robustness and convergence studies, formal error estimation procedures, inference from 

test problem suites, and – possibly with some danger – inference from previous 

experience (i.e. judgment). Past experience can count for much if properly understood 

and presented. 

Code verification can be completely achieved, and calculations can still be inaccurate, 

due to poor discretizations (lack of converged calculations). More generally, verification 

of the correct functioning of algorithms cannot be partitioned as cleanly as we would like. 

It may be impossible to determine that algorithms are failing only on available test 

problems; the failures may appear only on large-scale problems for which there is no 

referent solution. In validation, explicit solution verification must be performed. It targets 

the numerical errors present in any comparison of a calculation with experimental data. 

The fundamental question that must be recognized, if not completely answered, is “Does 

the numerical error fatally corrupt the comparison with experimental data?” In the 
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absence of acknowledgment of this problem, comparison with experimental data is 

irrelevant.  

Solution verification, in the absence of completely rigorous mathematics applicable to the 

full scope of the mathematical equations being solved, is essentially empirical. The key 

procedures that offer promise are: (1) a posteriori error estimation; (2) convergence 

studies; (3) numerical error models; (4) uncertainty quantification methods treating the 

numerical error as an epistemic (lack-of-knowledge) uncertainty.  

 

    Validation 

Experimental Validation 

Validation is fundamentally an experimental challenge. The equations that are solved in  

the codes used for nuclear energy system design are determined to be physically accurate 

(for a given application) through confrontation with experimental data having quality 

suitable for achieving the goals of validation. Because of limited resources, it is important 

to prioritize validation tasks. The logical desire to achieve a complete validation of a 

complex code for a predictive complex multi-physics application must be balanced 

against these constrained resources. Key elements (mainly necessary, but not claimed to 

be sufficient) of experimental validation, are inevitably:  

1. Precise specification of the needed validation tests to optimize the alignment of 

validation calculations with executed experiments. This requires sophisticated two-

way communication between those who execute validation experiments and those 

who perform validation calculations.  Validation is weakened when experimental data 

are not validation quality. The expectation is that the experiments themselves have 

been subjected to verification and validation to provide the highest quality data. That 

is, experiment verification confirms that the experiment was executed correctly; 

experiment validation confirms that the correct experiment was executed.  

2. Performance of calculation verification for all validation calculations. 

3. Quantification of measurement/computational prediction comparisons, including 

quantified uncertainty. This requires (a) experimental error bars that encompass 

experimental uncertainty and (b) calculation error bars that encompass calculation 

uncertainty determined by a program of simulation uncertainty quantification (UQ) 

Validation calculations are calculations that are compared with validation quality 

experimental data for the purpose of inferring physical accuracy of the associated 

calculations.  Validation calculations have the specific purpose of enabling an assessment 

of the physical quality/physical accuracy/predictive capability of the code for the 

application represented by the chosen validation data. The experimental data that 

validation calculations are compared with must have specific characteristics in order to be 

effective in enabling validation. These characteristics include quantified experimental 

uncertainty, reproducibility and robustness of experimental data, and as directly 

comparable with calculations as possible. 



 WORKING DRAFT 

 Page 6 

  

Experimental Error Bars 

Experimental “Error bars” is a euphemism for “experimental uncertainty quantification.” 

This is another problem that is unlikely to be completely and rigorously solved for 

complex experiments. The components of error bars are experimental bias and 

variability, and various factors enter into these components. The presentation of 

experimental error bars can literally be error bars of experimental data. To perform 

validation, some approximation to experimental “error bars” must be accomplished and 

presented to serve as a starting point for inference about the experimental-computational 

comparisons. Gross contributions to experimental uncertainty are diagnostic fidelity, 

experimental variability, and experimental bias. The more we expect to rigorously infer 

from a validation comparison, the more we need to understand about experimental error 

bars as quantifications of experimental uncertainty. For example, is an experimental error 

bar a central tendency of an underlying Gaussian distribution, a statistical confidence 

interval, a representation of a uniform distribution, a possibility interval, or something 

else again?  

   Uncertainty Quantification 

The quantification of uncertainty (UQ) in large scale simulations is playing an 

increasingly important role in the process of code verification and validation.  If a 

simulation is to be quantitatively validated against the results from an experiment, it is 

crucial to understand the expected uncertainty in the output metrics of the calculation and 

also have a quantitative determination of the error bars associated with the output metrics 

from the experiment.  In practice, it is possible to assess the true accuracy of a simulation 

when the experimental uncertainty is less than the predicated uncertainty of the 

simulation.  Error estimates of uncertainty for the experiment usually require that one 

performs an ensemble of experiments with controlled parameters and understands known 

systematic errors. 

A broad definition of UQ includes risk quantification. For risk quantification, one is not 

only interested in the uncertainty in the response metrics of some system, but also the 

impact of the response metrics on risk. Risk may be economic risk, human health risk, 

and other types of risk that concern an enterprise. Being able to complete UQ is a 

necessary but not sufficient condition to complete risk quantification, which in addition 

requires a model that takes system response metrics and their uncertainties as input and 

produces risk metrics and their uncertainties as the output. In all likelihood, the risk 

model is itself uncertain, e.g. the impact of a radiation dose on human heath, so 

convolution of the probability distributions of the system response metrics with the 

probability distributions of the risk metrics is called for. A quite different example of risk 

quantification concerns probabilistic risk assessment (PRA), where one is concerned with 

the likelihood of a given sequence of events occurring, including the uncertainty 

associated with the stated likelihood. In the following discussion of UQ, we implicitly 

include risk uncertainty for both of the instances noted above.  
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The quantification of uncertainty in large scale simulations becomes particularly 

important when the simulation is used as a predictive tool in describing phenomena in a 

regime that is outside of the bounds of previous experimental tests or known 

observations. Examples of this circumstance for nuclear energy systems include accident 

analysis of nuclear power plants, predicting the effects of aging on materials in a hostile 

environment, and predicting long term high-level waste repository performance.  Without 

experiments to check against code predictions in such regimes, it becomes essential to 

quantitatively evaluate the expected uncertainty in code output.  This task of UQ is 

complex in its undertaking for any simulation code that has non-linearly coupled multi-

physics algorithms as a representation of the underlying partial differential equations. 

In a complex multi-physics simulation code, many aspects of the physics may have a 

parametric representation or a choice of physics models each with their own degree of 

approximation.  The range or bounds of parametric settings in physical models and the 

choice of physics models represent a span of uncertainty in the simulation.  Typically, 

simulation codes are used with a particular choice of input physics models and perhaps a 

typical choice of parametric settings without any exploration of the full uncertainty in the 

simulation outcome.  Occasionally, a few different models are run in a few large scale 

simulations to uncover an estimation of the range or dispersion of output results and this 

gives some measure of the uncertainty, but it is usually woefully inadequate for 

determination of the full uncertainty in the simulation.  The problem of determination of 

uncertainty quantification is complex and is a topic for current research. 

To start, one must first identify the known sources of uncertainty in the simulation.  This 

may involve uncertainties associated with approximate models for the underlying 

physics, approximations in the numerical algorithms used; uncertainties associated with 

the settings of parameters that are used in physical models; settings that individual 

algorithms may have to work in a stable fashion; uncertainties associated with various 

levels of opacity tables, equation of state tables, and of course uncertainties associated 

with performing the simulation at a given spatial resolution when this resolution is not 

converged.  Considering that a multi-physics code embodies many components of 

coupled physics, the list of possible sources of simulation uncertainty can be quite large.  

Moreover, the uncertainties associated with these sources do not combine linearly, but 

may take on combinatorics of all possible settings.  Furthermore, uncertainties associated 

with various physics models within the code may cancel giving compensating effects. In 

a realistic multi-physics, multi-dimensional code, the number of parameters whose values 

may be bounded may be large and the problem of examining the full possible uncertainty 

resultant from all possible non-linear interactions among the uncertain components 

becomes exponentially complex. The problem of Uncertainty Quantification becomes 

one of reducing the computation of the full uncertainty space by a huge factor to become 

computationally tractable.  

The first step in an approach to Uncertainty Quantification is to identify all avenues of 

certainty for the simulation code.  Once this is established, some approach to the 

development of a sensitivity analysis must be developed to determine which components 

of uncertainty (algorithmic approximation, parameters, etc.) are the dominant drivers of 

the output metrics.  This is likely to be an iterative process that cannot be determined a 
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priori.  In order to perform a sensitivity study to filter out those components of 

uncertainty that may not dominate the total output uncertainty, one must know the 

physically or mathematically reasonable bounds of any set of parameters that represent a 

physical model. The determination of physically reasonable bounds may require a 

considerable research effort and the quantification of such bounds may be possible with 

knowledge gained from experiments, analytic analysis and scientific judgment.  Given a 

first estimate of the sensitive drivers of the code’s response to parametric and physical 

model variation, the problem can now be viewed as navigating the uncertainty of these 

dominant drivers in an N dimensional space where each dimension is representative of a 

parameter, physical model, and degree of approximation etc. to the underlying code 

physics. In doing this, correlations within the N dimensional space must be accounted for, 

which has the potential of reducing the dimensionality. It becomes essential to sample the 

full N-dimensional space with a set of simulations that are representative of all 

dimensions of uncertainty within the bounds of those dimensions. Thus, the problem of 

uncertainty quantification becomes one in which all identifiable uncertainties and their 

interaction with one another are run through the simulation code to give a predictable 

total output uncertainty in the code’s response to variation over acceptable bounds of all 

the components. The uncertainty in code response to uncertainties in all the key 

components of the code can be expressed as the total uncertainty in the main metrics of 

code output that are objectives of the simulation.   

 

 Critical Issues and Challenges in V&V and UQ 

Verification 

Verification of computational science codes is dominated by testing. Testing remains the 

most essential contributor to the collection of verification evidence. Sufficient confidence 

in verification of software firmly rests upon the idea of sufficient testing. Inadequate 

testing increases the risk of malfunctioning software in important circumstances. 

Testing first and foremost depends upon having well-defined tests that a code passes or 

fails. While simple tests directed at individual code components can be devised that have 

strong assessment criteria, more complex tests that integrate larger parts of the physics 

and have greater numerical complexity are very difficult to devise, and it can be 

extremely difficult to determine related assessment criteria. It is a critical problem in 

verification to devise such tests, as well as strong assessment criteria that create the 

verification consequences associated with the use of the test. 

Benchmarks for code verification are needed for a wide range of physics and engineering 

applications with special emphasis on coupled multi-physics. Important areas where 

solutions to semi-analytic verification test problems are sorely needed include, but are not 

limited to: 

Component physics semi-analytic test problems and solutions in 1-, 2-, and 3-D. 

Examples include: hydraulics for single-phase/single component, single-

phase/multi-component, two-phase/single-component and two-phase/multi-
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component fluids; heat conduction through structures; structural response of 

structures to applied loads; isotopic composition with irradiation; neutron and 

gamma spatial interactions rates; and material thermal conductivity with applied 

irradiation and temperature.   

Coupled physics semi-analytic test problems and solutions in 1-, 2-, and 3-D. 

Examples of interest areas are: thermal/hydraulics, thermal/neutronics; 

thermal/materials; thermal/structures; neutronic/materials; hydraulic/neutronics; 

hydraulics/structures; hydraulics/materials; structures/materials; 

thermal/hydraulics/neutronics; thermal/hydraulics/materials; and 

thermal/hydraulics/neutronics/structures/materials.     

Semi-analytic test problems and solutions for neutron transport beyond flux-

limited diffusion, characterized by angle dependent transport solutions. Radiation 

transport is among the limited class of physics problems where Monte Carlo 

simulation can provide meaningful test problem solutions. 

Research topics in the area of solution verification include: 

• Practical methods for estimating or bounding numerical errors associated with 

spatial and/or temporal discretizations, 

• Methods for estimating numerical errors associated with parameters that control 

the performance of numerical algorithms (e.g., artificial viscosity or hourglassing 

parameters), particularly in conjunction with other discretization errors, and 

• Practical methods for making validation or application decisions with under-

resolved models. 

• Approaches for solution methods based upon parallel asynchronous algorithms. 

 

Validation 

Well characterized validation experiments lie at the heart of simulation and model 

development. It is through these experiments that model accuracy can be assessed. 

Experiments can be generally classified into two types: (1) component (i.e. single physics 

phenomena); and (2) integrated (i.e. coupled physics phenomena). The types of 

component and integrated validation experiments will vary from application to 

application. 

Component experiments: 

High quality experiments for component physics are needed for multi-scale, multi-

physics, multi-dimensional codes for nuclear energy systems. Due to the highly non-

linear interactions that occur between physical processes, it is important to ensure that the 

isolated physical process under consideration be assessed for its accuracy. With 

integrated experiments, it is difficult to distinguish an error in the coupling between 
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component physics from an error in the individual components themselves. This is called 

a compensating error. Therefore, component physics experiments form a critical part of 

any validation process. A sample of component validation experiments that are desirable, 

include but are not limited to: single effect thermal/hydraulic; zero power reactor 

criticals; materials stress-strain, load deformation of structures; and chemical separations 

unit components.   

Even with the large number of existing experimental data that helps validate the 

computational physics models of nuclear energy systems, there is a real need for new 

experimental data that addresses component performance under severe accident 

conditions, aging of components, and fundamental parameters related to predictions of 

fuel performance. 

Integrated experiments: 

Ultimately, the applications under consideration tend to be multi-physics in nature. This 

means the validation of coupled/integrated physics models is of critical importance. In 

most codes, modularity of physics models means some type of operator splitting must be 

performed. Therefore, high quality, well diagnosed experiments of integrated physics are 

needed for multi-scale, multi-physics, multi-dimensional codes. It is this class of 

experiments that ultimately any multi-physics code must be able to simulate.  Examples 

include but are not limited to: integral thermal/hydraulics for natural circulation systems; 

fuel performance in power reactors, integral 

thermal/hydraulics/neutronic/structural/materials under degraded core conditions. 

Validation Methodology 

Beyond interest in the validation of specific phenomena, there are a number of 

methodological needs to support validation in a manner that allows quantification of 

uncertainties in non-linear, coupled multi-physics nuclear energy system applications: 

• Advanced statistical methods for making quantitative measurement/prediction 

comparisons, particularly in the presence of non-negligible variabilities and 

uncertainties in diagnostics, initial conditions, boundary conditions, and other 

model inputs. 

• Tools to automate the process of quantitative validation. 

• Methodologies for validation inference through a hierarchy of validation 

experiments ranging from simple material characterization test through a series of 

experiments of increasing complexity. 

• Extrapolation inference from a validation parameter space to an application 

parameter space that is significantly outside the validation database 

• Statistical methods for validation when there is only a single well instrumented 

test. 

 

Uncertainty Quantification 
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Intelligent statistical sampling techniques will be necessary to sample the full domain of 

an N-dimensional space of possible outcomes if other methods, e.g. adjoint method and 

automatic differentiation, are not appropriate.  If the dimensionality is high (N>10) then 

standard sampling techniques (e.g. Monte Carlo) will not be nearly efficient enough to 

cover the full domain of uncertainty with a number of sample calculations (likely in 2-D) 

that are computationally feasible. Adaptive sampling procedures will have to be 

developed that will sample the full N-dimensional domain in an efficient enough way that 

clusters of sample simulations in those regions of the domain will capture where the 

sensitivity of the simulation response to variation in parameters, models, approximations 

etc. is highest. Examining the code response to the full variation of all parameters in the 

physical models comprising the code by intelligent sampling of the N-dimensional 

parameter space will provide a total output certainty, but the full ensemble of models 

consisting of the combinations of the parameters and their variations may not satisfy data 

from available experiments. Thus, it is necessary to find the ensemble of models and the 

parametric settings that comprise them that at least satisfy available data.  This requires 

an intelligent filtering of the full ensemble of models that cover all of the uncertainty 

space of the simulation.  Once such a filtered set of parametric settings becomes available 

that give rise to an ensemble of output calculations that satisfy known experimental data 

from different experimental regimes, techniques must then be developed to propagate this 

set of models to regimes for which no experimental data exits and use the ensemble set in 

this regime to predict the total uncertainty of output metrics for those regimes.   

The entire process of Uncertainty Quantification has important challenges that must be 

addressed.  The study of these issues is critical to any UQ component of a V&V program 

plan.  Many of these issues are under current exploration in the laboratories V&V 

programs. 

1. What approaches can be developed that allow for the determination of the 

dominant sensitivities in the code that drive the uncertainty in the output of a large 

scale simulation (particularly when the outputs are highly non-linear functions of 

the inputs). 

2. How do these approaches compare with one another in determining the dominant 

sensitivity drivers of output uncertainty? 

3. What approaches can be developed to propagate the uncertainty associated with a 

large number of uncertain parameters (N>>10) through the simulation to 

determine a prediction of the total uncertainty in the output metrics of large scale 

simulations. How can this be accomplished in a computationally efficient way 

when dimensionality of uncertainty space is high (i.e. N>>10) and the 

computation cost of a code run is very high? 

4. What approaches can be developed to reduce the dimensionality of a high 

dimension UQ space (e.g. “The Curse of High Dimensionality”)? 

5. How sensitive is the final uncertainty of output code metrics to the input 

probability density functions of the settings of code parameters in the physical 

models? 
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6. How many sample calculations are required to obtain the output uncertainty in a 

code simulation for an arbitrary number of uncertainty dimensions N? How can 

the accuracy of the output uncertainty for a given number of sample simulations 

covering an arbitrary number of uncertainty dimensions be quantitatively 

determined? 

7. What techniques can be developed to determine if the ensemble of models that all 

fit known experimental data is complete? 

8. How do we V&V a UQ methodology? 

9. How do quantitatively determined output uncertainties compare when determined 

by different UQ methodologies? 

10. What experiments can be designed that can be used to test a UQ methodology?   

11. How can the confidence in a UQ methodology in the determination of the 

uncertainty in code output metrics be measured when possible experiments that 

could potentially test the methodology are not in the desired regime of code 

simulations? 

12. Are there benchmark problems that can be developed that represent a fair test of 

competitive methodologies for UQ and sensitivity analysis? 

13. What are practical methodologies for the aggregation and propagation of aleatory 

uncertainties, epistemic uncertainties, and combined aleatory and epistemic 

uncertainties? 

14.  How is UQ to be completed when parameter and other sources of uncertainties 

state condition dependent for transient problems? 

15.  How to efficiently propagate uncertainties through loosely coupled physics 

packages typical of operator splitting approaches? 

16.  How to propagate uncertainties through scales for multiscale problems? 

17.  How to gain computational efficiency advantage of multiphysics problems 

composed of a mixture of linear and nonlinear individual physics responses?  

18. How to complete UQ for PRA when using dynamic event sequences? 

19. What special problems present themselves with extending UQ analysis to 

exascale architectures where 10^6 ensemble simulations become feasible and 

enormous data sets results from the UQ analysis? 

20. How do we develop codes of the future that intrusively propagate uncertainty as 

the simulation evolves in time? 

 

 


