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Sequence alignment identifies regions of similarity between biological sequences. It can be used to 
infer functional, structural, and evolutionary relationships between sequences, assist in identifying 
members of gene families, and help in discovering new drugs.  The standard for pairwise sequence 
alignment is the BLAST heuristic [1] while ClustalW [2], T-COFFEE [3], and Probcons [4] are used for 
multiple sequence alignment.  However, despite these fast heuristic alignment algorithms, the size of 
sequence databases continues to grow at a rate faster than these sequence alignment algorithms can 
compute on them [5].  That is, while the speed of computational nodes double roughly every 24 
months, database sizes double every 12 months.  Consequently, parallel tools such as mpiBLAST [6-
9] were introduced, but even these will not be enough to handle the oncoming onslaught of genomic 
data due to the advent of metagenomics [10] and next-generation sequencers from Illumina and Ap-
plied Biosystems [11-13], which will further exacerbate the 
problem by producing as many sequences in one week as 
it took the entire GenBank database to accumulate over its 
27-year lifetime [14].  Finally, dealing with this amount of 
data, while still computationally intensive, will shift the per-
formance bottleneck from computation to I/O, i.e., in-
put/output.  Examples of the above issues can be demon-
strated across a myriad of applications including finding 
missing genes in genomes, real-time pathogen detection, 
and personalized genomics, including genome-wide, sin-
gle-nucleotide polymorphic (SNP) analysis of the human 
genome for disease associations. Thus, investments in 
massively parallel sequence alignment and its associated 
areas will be critical to the plethora of biological applica-
tions that are downstream from sequence alignment. 
Below we briefly address the challenges and importance of tackling one of the above problems: find-
ing missing genes in genomes, a new area of research that has the potential of enabling a potpourri of 
biological research, thus making seed investments invaluable, given the expected payoff, e.g., effi-
ciently identifying enzymes to enable an industrial process.  Finding missing genes, in collaboration 
with Prof. Joao Setubal who proposed the problem, can provide a more complete picture of the capa-
bilities of the organism in question. If the organism is a pathogen, then one may be better able to con-
trol the disease it causes; if the organism is beneficial, one may be able to understand better its me-
tabolism and hence improve its “efficiency.” In all cases, it will improve our knowledge of the repertoire 
of protein-coding genes found in nature, and that in itself, can lead to other discoveries, e.g., an en-
zyme that can be used in some industrial process.  In the case of the ORNL Bioenergy Science Cen-
ter, for instance, it means more readily identifying the necessary enzymes to efficiently convert bio-
mass sugars into hydrogen or electrical energy [15, 16]. Thus far, we have already uncovered hun-
dreds of missing genes [17], a process that is outlined below. 
In 2007, conventional wisdom espoused that finding missing genes in 567 microbial genomes was 
computationally infeasible because it entailed O(1015) massively parallel sequence alignments, fol-
lowed by significant post-processing.  However, by leveraging my open-source mpiBLAST cybertool 
(http://www.mpiblast.org/) [6-9], I led a team of 15 interdisciplinary researchers from 7 institutions 
around the world and developed additional software cybertools to integrate a set of distributed 
supercomputers, totaling 12,000+ processor cores and approximately 0.2 petaflops in performance, to 
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tackle the massively parallel sequence alignment portion of finding missing genes in genomes and to 
store approximately a petabyte of output in Tokyo, Japan, the only place where I could identify suffi-
cient storage [18]. (The post-processing details of finding missing genes can be found in [17].) 
The raw prototyping of our cybertools took on the order of two months for the team to develop while 
the massively parallel sequence alignment would have taken approximately three years to complete. 
Why so long? While leveraging large-scale parallelism dramatically dropped the computation time, 
each parallel compute node generated enough output data to cause the performance bottleneck to 
shift dramatically from computation to I/O, i.e., computational biology to I/O biology.  To address this 
issue, we created ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing to 
reduce the task from over 156 weeks to a mere 2 weeks [18-20]. 
However, the above process took a heroic effort of personnel resources and cyberinfrastructure re-
sources to achieve.  This is a problem that is not specific to just finding missing genes, it also applies 
to a host of other applications that are downstream from sequence alignment, such as those noted 
earlier, i.e., genome-wide, single-nucleotide polymorphic (SNP) analysis, real-time pathogen detec-
tion, personalized genomics, and so on.  Furthermore, I have only talked about pairwise sequence 
alignment here; the problems in multiple sequence alignment are even more daunting.   
 
 

Accelerating the Computation of Long-Range Interactions:  
Towards Rational Drug Design 

In molecular modeling, whether classical or quantum, long-range interactions are difficult to compute 
accurately because the interactions between all pairs of points must be computed.  (This general 
problem also has direct applicability to cosmology, e.g., http://www.astrogrape.org/, which has won 
numerous Gordon Bell Awards at ACM/IEEE Supercomputing.)   
We are specifically looking to speed-up implicit solvent molecular dynamics with a newly developed 
HCP algorithm, which exploits the natural partitioning of biomolecules into its constituent components 
to speed-up the computation of pairwise electrostatic interactions with a limited and controllable im-
pact on accuracy [21].  For large systems, the O(N log N) complexity of HCP delivers up to 3 orders of 
magnitude in speed-up [21] relative to the reference exact O(N2) computation. If HCP could be com-
bined with our current 3 orders-of-magnitude speed-up of electrostatic interactions on the GPU [22], 
the resulting million-fold speed-up could revolutionize the field of molecular modeling.   
These long-range interaction calculations can, in turn, contribute in the process of rational drug de-
sign.  Because one must find a small molecule that blocks the function of a particular enzyme, e.g., 
the viral protein responsible for AIDS, the above calculations, when appropriately mapped and then 
coupled with understanding the precise 3D structure of that protein, can lead to successful rational 
drug design, as done with the drug Sustiva, one of the drugs that stopped the AIDS epidemic in the 
U.S., i.e., part of the anti-retro viral cocktail. 
 

In closing, while investing in the above areas will enable researchers to conduct their research faster, 
it more importantly empowers researchers across disciplines to tackle problems previously viewed as 
infeasible or that require heroic efforts and significant domain-specific expertise to solve.  In short, it 
will enable researchers with the power to attempt problems previously viewed as infeasible as well as 
the power to run “What if?” scenarios at will.  In the long term, we hope to commoditize such endeav-
ors, but for now, simply identifying and securing the needed petascale resources, both in terms of 
personnel and cyberinfrastructure, to tackle the above problems remains a significant challenge. 



Populations, Communities, Ecosystems and Evolutionary Dynamics: Genomics and Metagenomics 

Opportunities in Biology at the Extreme Scale of Computing, DOE Office of Science, August 17-19, 2009. 

References 
[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic Local Alignment Search Tool,” J. Molecu-

lar Biology, 215(3):403-410, 1990. 
[2] J. Thompson, D. Higgins, and T. Gibson, “ClustalW: Improving the Sensitivity of Progress Multiple Se-

quence Alignment …,” Nucleic Acids Research, 22(22):4673-80, Nov. 1994. 
[3] C. Notredame, D. Higgens, and J. Heringa, “T-Coffee: A Novel Method for Multiple Sequence Align-

ments,” J. Molecular Biology, 302:205-217, 2000. 
[4] C. Do, M. Mahabhashyam, M. Brudno, and S. Batzoglou, “PROBCONS: Probabilistic Consistency-based 

Multiple Sequence Alignment,” Genome Research, 15: 330-340, 2005. 
[5] F. Meyer, “Genome Sequencing vs. Moore’s Law: Cyber Challenges for the Next Decade,” CTWatch 

Quarterly, 2, 2006. 
[6] J. Archuleta, E. Tilevich, and W. Feng, “A Maintainable Software Architecture for Fast and Modular Bioin-

formatics Sequence Search,” IEEE International Conference on Software Maintenance, 144-153, October 
2007. 

[7] A. Darling, L. Carey, and W. Feng. The Design, Implementation, and Evaluation of mpiBLAST. 4th Interna-
tional Conference on Linux Clusters, Best Paper, June 2003. 

[8] W. Feng and A. Darling, “mpiBLAST: A High-Speed Software Catalyst for Genetic Research,” R&D 100 
Award, 2004. 

[9] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W. Feng, “Massively Parallel Genomic Sequence Search 
on the Blue Gene/P Architecture,” ACM/IEEE SC ’08 (Supercomputing), Nov. 2008. 

[10] National Research Council, The New Science of Metagenomics: Revealing the Secrets of Our Microbial 
Planet. National Academy of Sciences, 2007. 

[11]  454 Life Science, Products and Solutions. http://www.454.com/products-solutions/system-features.asp. 
[12] Illumina Inc, “Illumina Presents Development Roadmap for Scaling its Genome Analyzer,” 

http://www.reuters.com/article/pressRelease/idUS132680+05-Feb-2009+BW20090205.  
[13] J. Perkel, “Sanger Who? Sequencing the Next Generation,” Science, 2009.  
[14] D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, and D. Wheeler, “GenBank,” Nucleic Acids Research, 

36 (Database issue), January 2008. 
[15] X. Ye, Y. Wang, R. Hopkins, M. Adams, B. Evans, J. Mielenz, and P. Zhang, “Spontaneous High-Yield 

Production of Hydrogen from Cellulosic Materials and Water Catalyzed by Enzyme Cocktails,” Chem-
SusChem, 2(2):149–152, 2009. 

[16] P. Zhang, B. Evans, J. Mielenz, R. Hopkins, and M. Adams, “High-Yield Hydrogen Production from Starch 
and Water by a Synthetic Enzymatic Pathway,” PLoS ONE, 2(5):e456, 2007. 

[17] A. Warren, J. Archuleta, W. Feng, and J. Setubal, “Missing Genes in the Annotation of Prokaryotic Ge-
nomes,” In preparation. 

[18] P. Balaji, W. Feng, J. Archuleta and H. Lin, “ParaMEDIC: Parallel Metadata Environment for Distributed 
I/O and Computing,” ACM/IEEE SC ʼ07 (Supercomputing), Storage Challenge Award, November 2007. 

[19] P. Balaji, W. Feng, and H. Lin, “Semantic-Based Distributed I/O with the ParaMEDIC Framework,” 17th 
ACM/IEEE International Symposium on High-Performance Distributed Computing, 175-184, June 2008. 

[20] P. Balaji, W. Feng, H. Lin, J. Archuleta, S. Matsuoka, A. Warren, J. Setubal, E. Lusk, R. Thakur, I. Foster, 
D. Katz, S. Jha, K. Shinpaugh, S. Coghlan, and D. Reed. Distributed Data I/O with ParaMEDIC: Experi-
ences with a Worldwide Supercomputer. International Supercomputing Conference (ISC), Best Paper 
Award, June 2008. 

[21] R. Anandakrishnan and A. Onufriev, “An N log N Approximation Based on the Natural Organization of 
Biomolecules for Speeding up the Computation of Long Range Interactions,” J. Computational Chemistry, 
2009. 

[22] R. Anandakrishnan, T. Scogland, A. Fenley, J. Gordon, W. Feng, and A. Onufriev, “Accelerating Electro-
static Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units,” Techni-
cal Report, Virginia Tech, 2009. 



State of the art, Opportunities in Biology at the Extreme Scale of 
Computing, mini-white paper, Ed DeLong 

 

For the purposes of this document, ‘metagenomics’ is defined as cultivation-

independent genomic analysis of microbial assemblages or populations.  While still in its 

infancy, metagenomics has already contributed significantly to our knowledge of the 

genomic structure, population diversity, gene content, and composition of naturally 

occurring microbial assemblages. In low complexity populations metagenomic studies 

have led to the assembly of near complete genomes from dominant genotypes(13), and 

have provided composite genomic representations of dominant populations(1, 7). Despite 

the large datasets now available however, high allelic variation in microbial populations, 

high species richness, and relatively even representation among species, still render 

whole genome assemblies of individual genotypes impractical,  given current sequencing 

and assembly technologies(10, 14, 15).  Given appropriate data scale-up enabled by 2nd 

and 3rd gen sequencing technologies, appropriate computation alogorithms and petaflops 

of computing power will certainly be required to address this problem on large scales. 

 

A major challenge in emerging metagenomic, ‘metatranscriptomic’ and 

‘metaproteomic’ studies are the sheer size of the datasets, and the new methods and tools 

and computational infrastructure that is needed to deal with their magnitude.  Size 

matters. These exponentially growing datasets raise new challenges with respect to data 

management, computational resources, sampling and analytical strategies, and database 

architectures – no currently met by existing alorithms or computational infrastructures 

and capacities.  The need to establish standards for metadata submission and reporting, so 

that primary sequence data can be related across relevant environmental parameters is 

clear.  The Genomic Standards Consortium (GSC) are promoting schemes reminiscent of 

the MIAME standards for microarray data 

(http://www.mged.org/Workgroups/MIAME/miame.html),  that would capture metadata 

associated with genomes (Minimum Information about a Genome Sequence, MIGS), and 



metagenomic data (Minimum Information about a Metagenome Sequence, MIMS)(3, 6).  

For archived datasets, such metadata field standardization and reporting will be critical. 

As mentioned above, we are entering a new era in microbial ecology and biology,  that 

will increasingly employ high-throughput sequencing data as an analyte in experimental 

protocols.  Coordination of experimental reports from such inquiries will be important, 

and MIAME-like standards for such reporting (Minimum Information about a high-

throughput SeQuencing Experiment – MINSEQE)  have recently been proposed as well 

(http://www.mged.org/minseqe/).   Even “simple” annotation, archiving, and accessing of 

the new sequence data types and experiments, along with associated and relevant 

metadata, poses significant challenges for the biological community.  These challenges 

are now beginning to be addressed by the development of new types of metagenomic 

databases(8, 9, 11), analytical strategies and statistical approaches.  But still,  the tools 

and compute power for actually analyzing and comparing the data is vastly outstripped 

by the data.  Iterative “all against all”  blast runs, for example, are out of the question 

with current compute resources. 

 

          There are many new and evolving methodologies that extend metagenomic 

approaches further along the hierarchy of biological organization  - notably 

transcriptomics and proteomics are being applied successfully to the study of complex 

natural microbial populations. Development of microbial community transcriptomic 

methods is enabling a new research agenda in microbial ecology, that utilize sequence 

data as an analyte in  experimental field studies(5, 12).   The approach enables the 

measurement of microbial assemblage gene expression in microcosms, mesocosms or 

natural samples, as a function of environmental variability over time.  The environmental 

variation examined can be natural (for example, tracking changes in gene expression as a 

function of the diel cycle), or applied (for example, monitoring changes in gene 

expression following nutrient emendation).   By tracking genes responsive to specific 

environmental perturbations, it should soon be possible to track environmental 

perturbations that are first observable as changes in gene expression in resident microbial 

populations, but that later may lead to shifts in community composition.  Quantifying the 

variability and kinetics of gene expression in natural assemblages has potential to provide 



a fundamentally new perspective on microbial community dynamics.   Can expression 

patterns provide clues as to the functional properties of hypothetical genes ?  What are 

the key community responses to natural or anthropogenic environmental perturbation ?   

Are there fundamental community-wide regulatory responses common to disparate taxa ?  

Are certain taxa or metabolic paths more or less responsive to particular environmental 

changes ?   Are specific changes in gene expression indicative of downstream changes in 

community composition ?   

 

          In similar ways, ‘metaproteomics’ adds dramatically to the complexity of 

datatypes, observational and experimental scenarios, and computational challenges that 

need to be to be met.  One can easily imagine complex datasets with rich environmental 

metadata for which phylogenetic survey, metagenomic, transcriptomic, and proteomic 

data also exists.   Extending such data across different spatial and temporal gradients and 

scales, is well within the reach of current technologies.  Computation and data 

managememt infrastructures however, for organizing and analyzing such data do not 

currently exist.  Indeed, complex physical models like the MIT Global Circulation model, 

coupled with biological ecological and evolutionary modeling, are already beginning to 

be used(4)  – requiring large amounts of compute resources to run just the physical 

models, not to mention the evolutionary modeling. 

Efficient bioinformatics management and analytical practices will not be a 

panacea for the larger challenge of describing microbial biology at an ecosystem level.  

There still exists a significant mismatch with respect to integrating “bottom up” 

reductionist molecular approaches, with “top down” integrative ecosystems analyses.   

Molecular datasets are often gathered in massively parallel ways, but acquiring 

equivalently dense microbial and biogeochemical process data(2) is not currently as 

feasible.  This  ‘impedance mismatch’ (e.g., inadequate (or excessive) ability of one 

system to accommodate the input from another), is one of the larger hurdles that will 

have to be overcome for more realistic, integrative analyses that interrelate datasets 

spanning from genomes to biomes.  



The need for more advanced computational infrastructures for such analyses is evident 

and urgent. 
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* What specific problem could be attacked and solved with the application of sustained 
multiple petaflops of computing power?  What progress could be obtained on the problem 
at roughly the 10, 100, and 1000 petaflops levels of sustained performance? 
 
In random order: 
• Understanding the brain – artificial neural networks, true autonomy (e.g., [6-9, 2]) 
• Genomics (genotype – phenotype) 
• Proteomics (including protein folding, de novo protein design, e.g., [3-5, 1]) 
• Drug design 
• Simulation of cellular pathways 
• Protein expression 
• Chemical reaction networks 
 
* Is the problem one of the “top 10” problems for the scientific discipline, independent of 
computing?  Who would constitute the community of scientists and/or engineers that would 
enthusiastically address the problem? What would be the degree of international potential 
participation? 
 
Brain function, true autonomy, protein folding/design and cellular pathways are certainly among 
the top 10 problems, even independent of computing. The community of scientists that would 
enthusiastically address the problem comprises computational biologists, software architects, 
computer scientists (in particular also working in high-dimensional optimization), 
mathematicians, physicists (for modeling), and biologists. There is a high degree of international 
potential participation as these are overarching problems that are of broad international interest. 
 
* How is the use of petascale computational modeling and simulation irreplaceable in 
answering this question?  Does it augment existing techniques or replace them?  Is there 
history of large-scale computation being the preferred approach for this problem? 
 
Especially in the protein folding and design field there is a history of large-scale computing 
being the preferred approach, as more relevant (larger and more complex) molecules can be 
tackled with more computational resources (e.g., [3-5]). However, one has to exercise caution in 
developing codes that are actually scalable and thus can take advantage of petascale computing 
(e.g., Simulated Annealing in the optimization community allows for a linear speed-up [1]). 
 
* Why are the other techniques (e.g., experiments/observation, more traditional theory) 
that could answer these questions not satisfactory?  Is it even feasible to consider other 
techniques? 
 
Because of the inherent complexity these problems cannot be tackled or solved in a timely 
manner with just experimental and traditional theory approaches. Rather computational 
modeling, multi-parameter optimization, and data mining can integratively inform and guide the 
actual experimentation in the laboratory. That way the experiment validates the computational 
models and predictions. 
 
* What is the current status of the computing tools for the work being proposed: 
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mathematical models, algorithms, software, and data analysis tools? What is the largest 
scale to date that codes have been run? (e.g. 1,000, 10,000, 100,000 cores) Are there existing 
code teams working on codes for this problem area, or is this a new area that would need 
seed investments? 
 
As for multi-dimensional optimization (see also “Stochastic Optimization Framework” below), 
these have been run on O(1000) (i.e., thousands) of CPUs. The optimization community works 
on parallelizing these codes, or making them at least distributable (see also [1]).  
 
* What experimental and observational data is there available to validate the codes?  Is the 
validation method well established? 
 
In the case of protein design, the computationally proposed proteins can subsequently be 
synthesized in the lab to test out the folding properties and biological activities (e.g., [3-5]). 
 
* What are the missing pieces in the areas of mathematical models, algorithms, software 
required to solve the problem? How would you rank them in terms of importance, cost, 
and risk? 
 
• Mathematical models, numerical methods, and simulations that are scalable. 
 
Some of the computational tools and simulation/numerical techniques do exist and are well-
established. Others, such as Stochastic Optimization Frameworks [1] using Simulated Annealing 
[10, 11, 1], Genetic/Evolutionary Algorithms [12, 13], and Genetic Programming [14] for high-
dimensional optimization (Fink et al., 2008, 2009), need to be much more introduced into the 
respective special interest communities and subsequently interfaced to the respective problems at 
hand. Thus one of the bigger challenges lies in the dialog between interdisciplinary scientists to 
familiarize each other with the tools and problems, and to jointly generate/create 
appropriate/high-fidelity models and solutions that address the key problems in biology. 
 
Modeling Scale 
Another question of importance is when it is appropriate (matter of accuracy) and sufficient 
(matter of computational resources/time) to use micro-, meso-, or macroscopic modeling. Akin 
to the quantum mechanical description at small scales and a mechanical description at larger 
scales, it is important to judge the level of granularity that has to be applied to understanding the 
respective aspects of biological problems. This has direct implications on what computation 
resources or methods need to be employed: workstation, cluster computers, super computers, 
distributed computing, grid computing, lattice computations, simulations tools such as 
Mathematica and Matlab. In general, full-blown, quantitative spatio-temporal simulations should 
be aimed at. The techniques for this are well-established (e.g., lattice simulations with diffusion 
dynamics). Furthermore, for microscopic simulations game theory should be applied as well to 
study and simulate individual agent interactions, which will yield both quantitative and 
qualitative as well as spatio-temporal results. For large-scale simulations, simulation techniques 
from astrophysics (star-simulations, adaptive grid/mesh calculations) and fluid dynamics should 
be looked at and adopted. The actual challenge resides in the capability to model the respective 
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systems appropriately. This challenge can be overcome by putting together interdisciplinary 
teams of scientists, e.g., biologists, physicists, mathematicians. 
 
Complexity related questions to be addressed: 
There is a need for a comprehensive definition of “complexity”, especially as it pertains to 
microbes and interfaces. Related to the complexity question is the question of “reducibility” of 
complex systems, i.e., can the complex behavior of an observed biological system (e.g., 
microbial interface) be broken down into its (agent-based) constituents and be fully understood 
at the agent/agent interaction level, or are there synergistic effects that make it irreducible. This 
has direct implications as to how to treat the system, i.e., microscopically or macroscopically. 
Related to this question of “reducibility” is the question of “downward causation” in complex 
systems: can global indicators/objectives (e.g., climate change, hazardous waste, biofuel 
production rate) influence the agent level from which the complex system emerged? 
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What specific problem could be attacked and solved with the application of sustained 
multiple petaflops of computing power? 
 
Accurate modeling and simulation of multiscale biological phenomena, such as quorum 
sensing-mediated biofilm formation and microbial communities interaction with the plant 
rhizosphere, requires advanced computing power and mathematically robust methods 
that can incorporate the rapidly varying (seconds) dynamics of intracellular pathways 
and the slower (hours to days) time steps involved in the emergence of observable 
multicellular phenotypes.  Increased computational and algorithmic resources will enable 
accurate and predictive simulation that captures the interplay between spatial 
interactions and temporal signal propagation.  As we move from microbial colonies to 
multicellular organisms, the number of intracellular, cellular, and extracellular 
components grows exponentially.  With an estimated trillions of cells in the human body, 
not counting the estimated three pounds of bacteria in our digestive tract 
(http://www.usnews.com/articles/science/plants-animals/2008/04/08/microbes-to-people-
without-us-youre-nothing.html), the arrival of exaflop computing can bring the molecular 
simulation of multicellular organisms closer to reality.  Exascale computing can also 
enable simultion of microbial communities present in the soil (~1 billion bacteria per 
gram of soil, ~1 billion microbes per liter of sea water).  The realization of predictive 
multiscale simulation of organisms and microbial communities must capture not only the 
cellular dynamics among billions and trillions of cells, but also the thousands of 
components in each cell that ultimately determine individual cellular response which 
results in an observable phenotypic response.  This is a present challenge in 
computational biology that will directly benefit from exascale computing.   
 
What is the current status of the computing tools for the work being proposed: 
mathematical models, algorithms, software, and data analysis tools? 
Several approaches for multiscale simulation of biological systems are emerging.  In 
addition to methods such as agent-based modeling, multiscale simulation approaches 
include: 

- Coupled ordinary differential equations (ODE) and partial differential equation 
(PDE) methods (Dockery and Keener, 2001; Chopp et al., 2003)  

- Kinetic Monte Carlo (KMC) methods (Shrout et al., 2006) 
- Cellular Potts model (Jiang et al., 2005) 

 
To take advantage of the multiscale potential of exascale systems, further development 
of computational methods that enable coupling of intracellular, extracellular, and 
multicellular level reaction-diffusion model is needed.  Coupling ODE-based intracellular 
models implemented in BioXyce large-scale, parallel biochemical circuit simulator to 
SPAARKS, a KMCcode can enable the simulation of multiscale spatiotemporal 
dynamics of microbial systems (May and Schiek, 2009; Slepoy, et al. 2008).  



 
Empirical data for multiscale phenomena is increasing as technology enables 
observations at lower length and time scales.  Genomic, proteomic, and metabolomic 
data as well as physiological observations enable the reconstruction of stimulus-
dependent microbial behavior.  Advances in micro/nanosystems are enabling the 
observation of intracellular events at the single-cell level.  This multi-faceted dataset will 
facilitate calibration of mathematical models and simulations of biological systems.  
However they cannot replicate all possible perturbations a given system may encounter, 
this is the realm and value of simulation-enabled science.   
 
What are the missing pieces in the areas of mathematical models, algorithms, software 
required to solve the problem? 
Further advances in computational methods to enable exascale computational biology 
are needed.  These include: 

- Development of computational methods and code partitioning approaches to 
couple various simulation methods into a single multiscale platform.   

- Challenges in coupling stochastic and deterministic simulators  
- Methods for automatic run-time coarse/fine-graining various parts of model 
- Methods that enable the growing and shrinking of the computational model as the 

biological system grows/shrinks through cell division/death.  
- Given the inherent complexity of the phenomenon, the multiscale nature of the 

data, and the large amount of data used and produced in the simulation, 
methods for large-scale and advanced data visualization capabilities are needed. 
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Metagenome analysis for the next decade 

The Metagenomics RAST server {Meyer, 2008 #337} is a public, web‐based 
resource for the analysis and comparison of large shotgun metagenomics data 
sets. Together with a next‐generation sequencing machine it allows unique 
insights into microbial communities via sequencing of random (shotgun) DNA 
fragments taken directly from an environment. 

Direct high‐throughput sequencing of DNA has becoming cost effective ,with 
recent changes to a number of sequencing machines from companies like Roche 
(454) or Illumina (Solexa), data sets with several millions or even hundreds of 
million DNA fragment are becoming routine. With the appropriate analysis tools 
(CAMERA, IMG/M(1), MG‐RAST(2), MEGAN(3)) shotgun metagenomics allows 
the study of microbial communities in ways that was never feasible before (4‐7).  

The process of democratization of sequencing however the requirements for the 
community of metagenomics analysis providers are steadily increasing 
(awkward). Novel computational challenges are arising in many locations at the 
same time. Even previously simple tasks like an all‐vs‐all comparison of DNA 
fragments within a metagenome are difficult at 150 million fragments per 
sample. Yet at the time of writing, the vendors are preparing to release yet 
another generation of their respective chemistry, thus pushing the limits even 
further. 

The groups providing computational analysis need to face a number of 
challenges: 

‐ establish a working solution for data exchange (note the work of the M5 
platform in the Genomics Standards Consortium) 

‐ the same is needed for the exchange of primary analysis (e.g. BLAST 
results), recomputing the entire analysis if you are adding the n+1 
metagenome to an existing study is getting less and less feasible 

At the same time the new data also provides a new set of entirely different 
challenges, only a subset of the vast amounts of DNA can be mapped to known 
proteins.  

Finding solutions that allow systematic mining of large scale DNA data sets 
(metagenomes) for novel proteins (or fragments of DNA coding for novel 
proteins) is one of the tasks that will arise in the not too distant future for people 
analyzing metagenomes. 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Energy and electron flow in microbial communities: 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controlling the many 
faces of corrosion 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Abstract:  Corrosion of materials of various kinds is estimated to cost the U.S. on the order of 
275 billion dollars per year (FHWA report RD‐01‐156), a staggering yearly cost, nearly equaling 
the entire cost of reparation of hurricane Katrina.  This doesn’t count the cost of medical 
“corrosion” (bone and teeth loss), and the potential of global climate impact by “corrosion” of 
carbonate minerals.  Understanding corrosion in its many forms, and especially being able to 
distinguish those forms that are biologically impacted from those that are purely 
physical/chemical is an absolute necessity and prerequisite to being able to deal with the 
problem in a preventative way.  It is my strong opinion that only a concerted effort between 
experimental scientists, (microbiologists, chemists, geologists and engineers) coupled with a 
major effort in modeling and computing will provide the pathway for ameliorating this problem.   
 
Background:   
 

Electron transfer:  Perhaps the thing that microbes (Bacteria and Archaea) do best is 
electron transfer.  They have perfected the art of moving electrons – whether the energy is 
supplied by photons, by organic carbon, or by inorganic electron donors, bacteria seem to know 
all the tricks.  In addition, about 20 years ago, it became clear that bacteria were capable of 
extracellular electron transport (EET), the movement of electrons to solid electron acceptors 
such as iron or manganese oxides, or even the anodes of microbial fuel cells (1).  Since this first 
report, there have been literally hundreds of publications concerning EET, and it is now clear 
that microbes interact with surfaces of all kinds, not only as places to sit, but as sites of energy 
(electron donors), or sites of respiratory electron acceptors.     
 

Corrosion: In the general sense, some types of corrosion are simply an expression of 
microbial metabolism – expression of a community that is almost universally a mixed species, 
mixed function group of microbes working together to move electrons around, harvesting 
energy and producing biomass.  The byproducts of this metabolism can be electrons donated to 
minerals or materials, electrons extracted from minerals or materials, or protons (or organic 
acids) that might destabilize minerals or materials.  What is not well known or understood is 
which types of corrosion are in fact catalyzed by microbes, and which are simply physical or 
chemical, and in the former, which microbes are involved (and what mechanisms are being 
employed).   
 

Biofilms and microbial consortia:  Of central importance with regard to corrosion is the 
almost universal interaction of different species under anaerobic conditions to accomplish the 
movement of electrons through the system.  There are general statements, noting that the 
major organisms involved with the corrosion of steel are delta proteobacteria in the group 



Desulfobvibrio, but in fact few studies have utilized modern molecular approaches to identify 
the microbes and or the metagenomic content of various types of corrosion.  To my knowledge, 
there have been no attempts to establish such a data base, and use it to understand the nature 
of the corrosion process at a scale that might yield promising mitigation to this huge problem.   

 
Logic:  The logic used to define this problem is extremely simple:  microbes are 

opportunists that will exploit nearly any type of chemical energy available on Earth, and given 
that corrosion reactions are universally energy yielding, it is to be expected that communities of 
microbes will have evolved to take advantage of these energy yielding reactions.  The operating 
assumption then, is that the process is not a single‐cell microbial process, but an integrated 
community “effort” that yields the result.  Perhaps orders of magnitude more complex than the 
situation in a single cell, involving, settling, biofilm formation, cell to cell communication, and 
the energetic of communities rather than of single cells or even single species. 
 
  Question to be addressed:  While my interest is focused on the area of corrosion, the 
more general question is one of the dynamics of energy flow (and carbon flow) through 
complex microbial consortia, and the accompanying impact of these reactions on materials of 
many kinds.  The challenges are of a magnitude that it will really not be possible to do without 
the interaction of large scale computing and model establishment and testing.  I am such a 
novice that I have no idea of the importance of whether it is 10, 100 or 1000 petflops! 
 
  Top 10 problems?:  It is probably not an exaggeration to say that this is one of the 
premier interdisciplinary problems in the world today.  A general understanding of energy flow 
in microbial ecosystems would impact not only corrosion (a $300 billion problem), but medical 
science, and global carbon cycling as well: international cooperation participation is expected to 
be immediate and widespread. 
 
  How does petascale modeling and simulation help?  Here is where I have a lot to learn.  
To my knowledge, the communities working in these areas have not had serious interactions.  
Given the complexity of the system(s), it would seem to be an ideal place to focus such efforts. 
 
  Other approaches:  Traditionally, corrosion has been considered to be an engineering 
problem, and while MIC (microbially induced corrosion) is well known among corrosion 
engineers, very little in the way of mechanistic understanding is available.  In fact, it is difficult 
to find extensive information on the microbiology of corrosion, and almost no molecular 
population analyses or metagenomics can be found.  If a computational/experimental approach 
were established, it would stand to reason that the right kinds of data would appear, and some 
mechanistic understanding would result. 
 
 
 
1.  Myers CR & Nealson KH (1988) Bacterial Manganese Reduction and Growth with Manganese 

Oxide as the Sole Electron Acceptor. (Translated from Eng) Science 240(4857):1319‐1321 (in 
Eng). 



Building quantitative models of microbial ecosystems

Overview. One of the key challenges in microbial ecology is understanding how the 
numerous taxa act and interact to sustain a complex microbial ecosystem, even in well-
mixed environments such as the ocean. Related to this central problem are the 
questions of how such communities assemble (deterministically or do founder-effects 
dominate?), and how communities change over time due to the predictable dynamics 
expected from biotic interactions or due to genetic mutation and acquisition of novel 
traits.

Peta-scale computing opens the door to building realistically-sized (though still multi-
scale) simulations that could provide answers to some of these questions, but further 
empirical and theoretical studies are probably needed to ensure that these models 
accurately describe natural systems. More specifically, significant increases in 
computing power would, in principle, allow researchers to combine models of microbial 
metabolism, community structure, physical structure and fluid flows, and evolutionary 
dynamics, in order to make quantitative predictions about how species levels and 
metabolites should change over time. All of these models, however, are emerging areas 
of active research, and may not yet have the precision to be tied together in an “off-the-
shelf” and independent fashion. An approach more likely to be successful is to use 
observed dynamics of microbial populations and metabolites to solve an inverse 
problem to estimate the biological interaction terms and the metabolic processes 
attributed to different groups.

A few of the main computational challenges are described below:

Genomics. High-throughput sequencing approaches have enabled characterization of 
microbial ecosystems to unprecedented detail at the DNA level. Single experiments can 
yield gigabases of DNA corresponding, for example, to tens of millions of individual 
marker genes describing the taxonomic makeup of a community. Later generations of 
DNA sequencers promise expanded throughput (the $100 human genome), which could 
enable an era of microbial population genomics in which thousands or hundreds of 
thousands of microbial genomes are sequenced from each environment/timepoint. 
Performing simple preliminary analysis (genome assembly, gene prediction/annotation, 
homolog detection, ...) could prove difficult without peta-scale computing resources. 
More sophisticated analyses, including detection of natural selection or rates of 
recombination among strains or populations would raise the need for additional 
computational resources.

Population dynamics. A realistic model of population dynamics in a microbial 
ecosystem would combine physical models of fluid flow (on multiple spatial scales from 
cellular to global) with stochastic evolutionary dynamics including colonization, 
selection, and migration terms. In addition, recombination can generate new genotypes 
within populations, and modeling a large number of recombinant genotypes is important 
for basic questions in bacterial population genetics.
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Metabolites. Complete genome sequences provide the raw material for understanding 
the metabolic role of bacteria in the environment, but new algorithms will be needed to 
automatically generate metabolic reconstructions sufficient for metabolic modeling (e.g., 
new approaches to metabolic ʻhole-fillingʼ). High-resolution cellular metabolic models 
based on complete genome sequences must be abstracted to a smaller list of 
consumed and excreted chemical species for inclusion in broader ecosystem models 
tied to physical models of the environment. 
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