Systems Biochemistry, Christopher Chang

Fundamental biochemistry has experienced a renewal in the contexts of the rise of high-
throughput experimental technologies, advanced computing, and the recognition of the need for
alternative energy sources such as cellulosic ethanol and other photosynthetically derived
biofuels. Biology is a highly multiscale enterprise, spanning a range from molecules to
ecosystems and nanoseconds to millenia. The interconversion of constituent molecules is carried
out by cellular metabolism. Although a cell may be buffeted by ever-changing environmental
conditions, the timescales of catalyzed chemical reactions (ns — ms) often permit treatment of
cellular metabolism as a steady-state system with constant internal metabolite concentrations and
reaction fluxes, or as an oscillatory system changing slowly with respect to the component
chemical reactions. Most chemical reactions are catalyzed in the cell by enzymes, which have a
variety of properties including amount, specificity or selectivity, and catalytic power [1]. The
concentration of active enzyme in a cell is governed by its overall rates of synthesis and
degradation, which in turn are regulated at a genetic level. Enzymatic selectivity implies
(perhaps trivially) that it is not enough to know the total enzyme content in a cell, but the
amounts of each catalytically distinguishable species. Catalytic power is used here to encapsulate
the body of rate and binding constants associated with enzymatic turnover. All three of these
properties may be captured by the detailed kinetics of each enzyme, including inhibition and
activation by molecules not consumed or produced in the reaction catalyzed by the particular
enzyme.

Global challenge 1: Combinatorial Sampling and Optimization. Although highly detailed, a
genome-scale representation of these processes can be captured by a series of time-dependent
ordinary differential equations, and kinetics simulated by straightforward integration. If enzyme
concentration is viewed as a parameter (possibly possessing temporal dependence) alongside the
various kinetic constants, then a formidable computing challenge becomes the sampling and
optimization of steady-state concentrations or fluxes with respect to these parameters. This
embodies both a fitting exercise for parameter estimation (i.e., what ranges of kinetic parameters
explain a body of experimental data), as well as metabolic engineering tasks (i.e., given a set of
assumed values, what parameter values in a disjoint set lead to minimization/maximization of
one or more concentrations/fluxes?) [2, 3]. Each active parameter is then an orthogonal
dimension, and network response can be either sampled or optimized with respect to these

k
parameters. Sampling is a brute-force challenge, requiring integration of the ODE system nni
i=1
times, where n; is the number of sampled points for parameter i, and & is the number of
parameters to be sampled. For each such integration, one or more dependent fluxes or
concentrations may be captured for analysis and visualization with respect to the space of &
active parameters. Given that ODE integration of even large systems of equations can be
accomplished in seconds on modern processors, sampling lends itself to uncoupled parallelism;
however, concerns of overall throughput and synchronization among separate processes suggest
centralized exascale resources can be more desireable in some circumstances than, e.g.,
distributed grids. Optimization presents more subtle challenges for algorithmic paralellism, but
lends itself to hierarchical approaches (e.g., uncoupled parallelism among scatter search variants,
coupled parallelism among gradient-dependent optimizations for each variant).
Cells in a population are typically not synchronized with respect to enzyme concentrations—
any one enzyme in one cell is at a concentration sampled from a distribution characteristic of the
population and enzyme. Kinetic approaches like that discussed above can capture the average



behavior of the population, but there are questions that can be asked requiring explicit
enumeration of population members. Stochastic approaches [4] can exploit large-scale
computing resources in an uncoupled or lightly coupled fashion.

Global challenge 2: Graph Theory. With more coarse-grained approaches such as flux balance
analysis, effective constraints can be used to change the system to a modestly sized linear algebra
problem [5]. Here, there are less obvious numerical challenges amenable to HPC, although one
could formulate questions associated with flux bounds or parameters in the objective function
associated with constrained FBA optimization. However, a more direct challenge is connected
with enumeration of paths through a genome-scale pathway and their subsequent analysis.
Elementary mode (EM) analysis [6] decomposes genome-scale metabolic networks into a basis
of irreducible flux sets, such that elimination of any reaction in an EM would also eliminate the
possibility of a steady-state flow of metabolites from one external metabolite to another. The
number of EMs scales severely with the number of external fluxes for moderately sized
networks; analysis of H. pylori metabolism [7] led to ~5.8M EMs only considering 7 inputs and
7 outputs [8]. Extreme pathways [9] are a subset of EMs, differing in that all elementary
reactions are considered irreversible (i.e., no flux can assume a negative value), with reversible
reactions treated as two opposing irreversible ones. EMs and EPs might be considered as
examples of graph theoretic problems useful for the analysis and understanding of large-scale
metabolic networks [10], the challenges for HPC of which are being explored [11, 12].

Global challenge 3: Model Provenance. Computation ultimately comes down to information.
Biology’s complexity coupled with chemical detail presents thorny issues around the
assumptions made in a model, and how such models can be cataloged, searched, queried, and
related. Semantic technologies are reaching maturity, and standards being developed in the
context of the World Wide Web [13]. These technologies are partially supported by existing bio-
model expression languages, such as SBML [14]. Expanded use of these, as well as processes to
automate their accurate usage in model construction, will benefit computational biology at all
scales; but, the care and precision required for proper model annotation is especially important
for models to be simulated at the exascale.
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[ am currently involved in an effort to extend the SEED/RAST framework for
comparative genome annotation, to enable the creation and refinement of genome-
scale metabolic models that are suitable for systems level analyses such as flux-
balance analysis. Our goal is to generate functioning metabolic models for all
sequenced prokaryotes, and provide tools for refining these models manually. Our
plans for the near future are to extend this framework even further, for the
identification of regulatory elements (transcription factors, transcription factor
binding sites, regulons), generation of regulatory networks, and analysis of gene
expression data. As the database underlying the SEED grows in scope - both in the
number of sequenced prokaryotes and the quality of annotation across their
genomes - we expect that the quality of the metabolic and regulatory networks will
also grow. This will result in a database of genome-scale metabolic and regulatory
models that will enable comparative analyses at the network level, such as:

1) Filling in gaps in the prediction of phenotype from genotype. For example,
prediction of the biomass composition and transport capabilities of an
organism may be possible by cross-aligning knowledge about its
phylogenetic classification (e.g. gram positive/negative) with a comparison
of the biosynthetic and degradative pathways present in other organisms in
the same classification. Likewise, the integrated metabolic and regulatory
networks can be used to explore the strategies that organisms use for energy
production, and how the pathways of energy production are correlated with
environmental signals that impinge on the regulatory mechanisms.

2) Filling in gaps in the knowledge of metabolic and regulatory mechanisms.
Comparative analysis at the network level may reveal common gaps in
metabolism and regulation that correlate with phylogeny, environment, etc.
This may be useful for constraining algorithms that search the space of
possible biochemical transformations and to discover new metabolic and
regulatory pathways.

3) Exploration of the space of possible metabolisms. As the number of genome-
scale metabolic models and associated regulatory networks grows, patterns
in the presence/absence of pathways can be correlated across organisms to
discern the constraints upon the space of possible metabolisms. This
knowledge can be used to predict viable metabolisms that are as of yet
unobserved, as well as to propose metabolisms that can be engineered for
specific goals of interest to the DOE.



These three proposals are already feasible on a limited scale given current
algorithms and computing capabilities. What is important from an “Extreme
Computing” standpoint is the likelihood that automated techniques will cause a
rapid increase in the number of models available for these kinds of analyses. (The
rapid increase is itself a candidate for an “Extreme Computing” opportunity - see
Chris Henry’s workshop materials). In addition, the process of genome
annotation/model building/comparative analysis of networks feeds back on itself
(e.g., comparative network analysis may propose a new metabolic pathway, which
leads to genome annotation refinement), which will result in a continuous cycle of
regeneration of metabolic/regulatory models and recomputation of comparative
network analyses. Although it is hard to predict the level of computing power that
will be required for these kinds of analyses, it is clear that exponential growth in the
number of sequenced genomes will have a ripple effect of several orders of
magnitude across the stages of the process and analyses I have proposed here.
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Research Interests. Our goal is to uncover general principles underlying the molecular origins of spatial and
temporal control in biology. We use experiments and mathematical modeling to study the dynamics of biochemical
networks in single cells and the effect of random fluctuations on cellular information processing and cell behavior.
Our lab employs a mixture of biologists, physicists, computer scientists and mathematicians.

Digital assays and multiscale agent-based modeling: The goal of this project is to build a modular, parallel-ready
simulator capable of replicating the modular, multi-scalar architecture of complex biological systems, from
individual molecular events to cellular populations and organ behavior. By reproducing biological design in silico,
our emphasis is to connect in a computer molecular mechanisms to behavior (http://emonet.biology.yale.edu/nfsim/
). This project is a joint effort with James Faeder (U of Pittsburgh), Gary An (Northwestern U) and Rick Stevens (U
of Chicago).

Dynamical encoding of odors by the fly: We are interested in the role of time in the encoding of odor identity and
intensity in the primary layer of the fly olfactory system. In collaboration with John Carlson (MCDB, Yale) we are
performing in vivo electrophysiological recordings to assay the dynamical properties of olfactory receptor neurons.
In collaboration with Steven Zucker (Applied Mathematics, Yale) we are analyzing the geometry of the odor space.

The role of phenotypic variability in bacterial sensing: The question is how molecular noise might control a
biological function at the population level by tuning the distribution of single cell behaviors. As model system we
use a canonical sensory system in biology, bacterial chemotaxis in E. coli. For this project, we use direct comparison
between in vivo and in silico experiments. We already have a model that reproduces the stochastic behavior of
single cells and plan to extend it to include gene expression and metabolism.

The dynamical role of spatial localization in signal processing: We are interested in the effect of spatial localization
on signaling pathway and in understanding the interplay between physical forces, enzymatic reactions and spatial
control in bacteria. We have developed CellTracker, an automated cell detection and lineage analysis software that
enable us to quantify the spatio-temporal localization of fluorescently labeled proteins inside single cells within a
genealogy. We are combining these measurements with numerical simulations to investigate the bacterial
cytoskeleton dynamics and its role in signalling. This project is in collaboration with the Jacobs-Wagner lab.

Challenges for Advanced Computing and Mathematics

Predicting cellular behavior from individuals to populations. Although we have amassed an enormous amount of
molecular data about e.g. the cell cycle, bacterial chemotaxis pathway, and metabolism of E. coli we remain unable
to precisely predict the behavior of a growing population of chemotactic cells in a time-dependent 3D environment.
The first such simulation would have to predict the time-dependent distributions of mRNA, protein levels, and
positions of the individuals in the population. Currently we have separate simulations and models for metabolism,
gene expression, cell cycle, and signaling pathways. In this new simulation all these models should be connected.
The ultimate goal is to be able to perform accurate predictive digital assay faster than real experimental assays.

Accelerated stochastic agent-based simulation algorithm. In biology behavior emerges from stochastic interactions
between multiple molecules, cells and organisms. Accurate numerical predictions necessarily will require the
development of parallel-ready, stochastic algorithms that are flexible enough to enable the modeler to average out
small fluctuations at irrelevant scales while precisely modeling the statistics of the system at the scale of interest.
Importantly these methods should be capable of handling multiple scales in space and time. The effect of forces and
localization on reaction rates will have to be taken into account in an efficient manner.

Automated dynamical model construction and parameter sensitivity analysis. There is a disconnect between the
reconstruction of biological networks from genomics and proteomics data, and the dynamical simulations of cellular
behavior. One of the main problems is that network generation is a highly underdetermined problem. We need to
develop streamlined high-throughput frameworks for the automatic construction of dynamic models. We will need
novel sensitivity analysis methods to efficiently explore the behavior of stochastic systems as a function of
parameter values and to decide which parameter are most important and should be measured experimentally (see
Alexander et al., Science Signaling, 81(2):pe44 (2009)).
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Outline

e Molecular Interaction Networks

- Modeling, evolution, problems, practical implications

e Algorithms for Analyzing Molecular Inferaction Networks

- Conservation, Inference, Projection, Up- and Down-scaling

e Networks, Annotations, and Phenotypic Characterization

- Correlations across genotype, SNPs, franscriptional relationships, etc.



Ananth Grama 2003/12/03

Protein-Protein Interaction (PPl) Networks

e Inferacting protfeins can be identified via high-throughput
screening

- Two-hybrid
- Mass spectrometry
- Tandem affinity purification (TAP)

Protein
1.."..-:
Interaction " R R
Undirected Graph Model S. Cerevisiae PPl network

(Jeong et al., Nature, 2001)
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Gene Regulatory Networks

e Expression of genes is dynamically orchestrated through genes
conftrolling each ofther’s franscription

- Computationally induced from gene expression data and/or sequence
level analysis
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(Blazguez et al, EMBO Reports, 2001)
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Metabolic Pathways

2003/12/03

e Chains of reactions that perform a particular metabolic

function

- Reactions are linked to each other through substrate-product relationships
- Experimentally derived & computationally extended
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The AfCS Molecule Pages

The complete state network of Molecule Pages, which currently
consists of 13883 states and 20556 transitions among these states
(htt p: //ww. si gnal i ng- gat eway. or g/ nol ecul e/ ).
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Evolution of Molecular Interactions

e Evolution thinks modular” (Vespignani, Nature Gen., 2003)

e Cooperative tasks require all participating units

- Selective pressure on preserving interactions & interacting proteins
- Interacting proteins follow similar evolutionary frajectories (Pellegrini et al.,
PNAS, 1999)

e Orthologs of inferacting protfeins are likely to interact (wagner,
Mol. Bio. Evol., 2001)

- Conservation of interactions may provide clues relating to conservation
of function

e Modular conservation and alignment hold the key to crifical
stfructural, functional, and evolufionary concepts in systems
piology
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Conserved Interaction Patterns

e Given a collection of interaction networks (belonging fo
different species), find sub-networks that are common to
an inferesting subset of these networks (Koyuturk, Grama, &
Szpankowski, ISMB, 2004)

- A sub-network is a group of inferactions that are tied to each other
(connected)

- Frequency: The number of networks that contain a sub-network, is a
coarse measure of stafistical significance

- Subgraph Isomorphism!
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Algorithmic Insight: Ortholog Contraction

e Contract orthologous nodes info a single node

e NO subgraph isomorphism

- Graphs are uniquely identified by their edge sets

e Key observation: Frequent sub-networks are preserved = No
information 1oss

- Sub-networks that are frequent in general graphs are also frequent in
their ortholog-contracted representation
- Ortholog conftraction is a powerful pruning heuristic

e Discovered frequent sub-networks are still biologically interpretablel

- Interaction between proteins becomes interaction between ortholog
groups
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Results: Analyzing PPl Networks

e PPl networks for @ eukaryotic organisms derived from BIND and
DIP

- A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H.
sapiens, B. faurus, M. musculus, R. norvegicus

- # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

- # of interactions ranges from 340 (rice) to 28829 (fruit fly)

e Ortholog contraction

- Group proteins according to existing COG ortholog clusters

- Merge Homologene groups into COG clusters

- Cluster remaining proteins via BLASTCLUST

- Ortholog-contracted fruit fly network contains 11088 inferactions
between 2849 ortholog groups

e MULE is available at
http://ww. cs. purdue. edu/ pdsl /
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Conserved Protein Interaction Patterns
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Conserved Protein Interaction Patterns
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Conserved Protein Interaction Patterns
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State of the Art

e Data is the bottleneck (in-silico construction of the network?).

e Reliable data on no more than ten organisms. Networks with
thousands of nodes and tens of thousands of interactions.

e The exponential complexity of these algorithms makes them
ideal candidates for large-scale platforms.

e Current implementations scale to thousands of processors and
take days of runtime.
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Alignment of Networks

e Given two PPl networks that belong to two different organisms,
identify subb-networks that are similar fo each other

- Biological implications
- Mathematical modeling

e EXisting algorithms

- PathBLAST aligns pathways (linear chains) to simplify the problem while
maintaining biological meaning (Kelley et al., PNAS, 2004)
- NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets (Sharan et al., J. Comp. Biol.,
2005)

e Our approach (Koyuttrk et al., RECOMB, 2005) (Koyuttrk et al., J. Comp.
Biol., 2006)

- Guided by models of evolution
- Scores evolutionary events

- |dentifies sets of proteins that induce high-scoring sub-network pairs
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Subnets Conserved in Yeast and Fruit Fly Using our
Technique

Proteosome regulatory particle subnet
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State of the Art

e Local methods are suited to identification of modularity.

e Global methods (IsoRank, Berger et al.) support functional
orthology.

e Can we improve the search efficiency and coverage of greedy
(local) methods?

e Speed up the eigenvalue computations of spectral methods.
e Current algorithms scale to thousands of processors.

e Data quality is a key concern.
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Continuing Developments

e Building comprehensive maps that model crosstalk and weak
signals (inference, modularity).

e Constructing accurate flux models (data?)

e Full scale flux analysis for molecular processes.
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Continuing Developments

e Scaling molecular networks in space and time.

e Spatial scales must integrate atomistic models, scaling fo
cellular scale, fissue scale, individual, populations, ecosystems.

e femporal scales must reconstruct evolution and project
frajectories.
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Functional and Phenotypic Characterization

e Integrate large-scale SNP data, genomic data into functional
characterization of networks.

e Comprehensively characterize causality in disease specific
networks.

e Supporting full-scale in-silico design of molecules.
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Chris Henry

Suggested Template/Questions for Participant Contributions to the

"Opportunities in Extreme Computing for Biology Workshop"

* What specific problem could be attacked and solved with the application of
sustained multiple petaflops of computing power? What progress could be
obtained on the problem at roughly the 10, 100, and 1000 petaflops levels of
sustained performance?

[ see three significant problems in biology that could be solved with the help
of high performance computing (HPC): metabolic model reconstruction (10
petaflops), prediction of transcriptional regulatory networks (100 petaflops),
and prediction of feasible parameter values for dynamic models of
metabolism (100 petaflops). In parenthesis are the minimum computational
resources that I estimate will be required to make significant progress in
each of these areas in 3-5 years.

* Isthe problem one of the “top 10” problems for the scientific discipline,
independent of computing? Who would constitute the community of
scientists and/or engineers that would enthusiastically address the problem?
What would be the degree of international potential participation?

Metabolic model reconstruction is certainly one of the top 10 problems in the
Systems Biology, Metabolic Engineering, and Biomedical fields simply
because the models produced by this process are essential for the
advancement of these fields. Metabolic model reconstruction is also a
prerequisite for any meaningful reconstruction of the transcriptional
regulatory networks because the metabolic model is needed as the scaffold
that the regulatory network is assembled and implemented on. I see
Regulatory Network Reconstruction as the top problem being addressed in
the Systems Biology and Computational Biology fields today. Finally, I see
accurate dynamic modeling of single cell and multi-cell systems as one of the
primary long term objectives of the computational biology community. Such
models, if truly predictive, would enable us to intelligently engineer
organisms to perform a variety of useful tasks and rapidly develop
treatments for emergent infections.

* How is the use of petascale computational modeling and simulation
irreplaceable in answering this question? Does it augment existing
techniques or replace them? Is there history of large-scale computation
being the preferred approach for this problem?

Until now, HPC has not been heavily utilized by the Systems Biology field for
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a variety of reasons. The algorithms and software required to utilize HPC
with existing biological models have been missing. Few models have been
available for analysis, and the models we did have lacked the complexity to
consume significant computational power. Finally, the experimental data
required for fitting and validating the results of large-scale computational
modeling have been lacking. However, the recent emergence of numerous
high-throughput experimental techniques is rapidly changing this paradigm.
Petascale computing is going to be essential to keep up with all of this new
data. Biological systems are too complex to truly grasp without the aid of
computational models, and computational models will need to increase in
complexity in order to support the analysis of understanding of increasingly
complex experimental data. In short, there is no alternative to the use of HPC
in biology if the field is going to continue to advance.

*  Why are the other techniques (e.g., experiments/observation, more
traditional theory) that could answer these questions not satisfactory? Is it
even feasible to consider other techniques?

Certainly more/new biological experiments can be always performed, but I
believe biological systems are too diverse, dynamic, and adaptable to
understand completely through experimental observation alone. You can
experimentally measure the instantaneous concentration of an enzyme or
metabolite in a cell, but these concentrations change more quickly than they
can be measured. Computational models are required to discover the
principles that govern the behavior of these systems so that a small number
of measurements may be used to derive the long term behavior of the
system.

*  Whatis the current status of the computing tools for the work being
proposed: mathematical models, algorithms, software, and data analysis
tools? What is the largest scale to date that codes have been run? (e.g. 1,000,
10,000, 100,000 cores) Are there existing code teams working on codes for
this problem area, or is this a new area that would need seed investments?

We recently developed the software required to reconstruct, optimize, and
analyze genome-scale metabolic models on a massive scale using the Blue
Gene/P system at Argonne, and we are currently in the process of expanding
this software to include new algorithms and exploit new parallel MILP
optimization engines. We are also in the process of developing stochastic
simulation software that will run on massively parallel architectures to
perform parameter scans and simulate large-scale biological systems that
will be impossible to simulate without the use of 10,000+ CPU. We see both
of these efforts as important for continued investment and for expanded
collaborative development.

* What experimental and observational data is there available to validate the
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codes? Is the validation method well established?

There are numerous well established experimental methods that produce
data useful for validation of metabolic models and regulatory networks.
These include Biolog phenotyping arrays, genes knockout experiments,
mRNA microarrays, mRNA sequencing, 13C labeling experiments and ChIP-
on-chip.

What are the missing pieces in the areas of mathematical models, algorithms,
software required to solve the problem? How would you rank them in terms
of importance, cost, and risk?

1.) Algorithms and software for applying HPC to solve extremely large scale
optimization problems with 10¢ variables and constraints. Such
algorithms would be valuable for globally optimizing biological models
and systems to fit experimental data. There are numerous areas of
biology that would benefit from this software including: annotation,
genome-scale reconstruction, and dynamic modeling. Development of
this software probably low risk and of medium cost and importance.

2.) Algorithms and software for the prediction of protein structure, protein-
ligand binding energies, and enzyme kinetic constants from protein
sequence. Development of this software would be of enormous benefit as
it would be much cheaper and more effective than experimentally
measuring these parameters. However, it would also be high risk as it is
unclear if this is even doable given our present understanding of the
problem.

3.) Algorithms and software for applying HPC to the dynamic simulation of
biological systems on a massive scale. To my knowledge, there is no
software currently available that can scalably partition a large-scale
simulation of a biological system among 10K+ processors. Such software
will be essential for us to model biological systems beyond a minimal
level of detail, size, and complexity. Development of this software would
probably be low risk and low cost.
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Suggested Template/Questions for Participant Contributions to the

"Opportunities in Extreme Computing for Biology Workshop"

*  What specific problem could be attacked and solved with the application of
sustained multiple petaflops of computing power? What progress could be
obtained on the problem at roughly the 10, 100, and 1000 petaflops levels of
sustained performance?

-On the protein design end, petaflop computing power will enable addressing
problems with higher combinatorial complexity stemming from the number of
amino acids to be designed (from 10-20 to over 50). In parallel, with increased
combinatorial complexity petaflop computing will enable the much more
expedient calculation of energy function (e.g., binding energy, stability, ect.) thus
enabling the introduction of more accurate levels of theory and explicit water
treatment at the design level.

-In metabolic networks, petaflop computing power will enable the automated
reconstruction and curation of the next generation of metabolic models (i.e., for
microbial communities, plants, etc.), metabolic flux elucidation (using labeled
substrates) for large-scale isotope metabolic reconstructions, and the de novo
design of microbes for targeted overproductions.

* Is the problem one of the “top 10” problems for the scientific discipline,
independent of computing? Who would constitute the community of scientists
and/or engineers that would enthusiastically address the problem? What would be
the degree of international potential participation?

Increased computing power is bound to impact top 10 problems in a variety of
ways. Ability to more quickly assess the effect of modeling/algorithmic updates
on results will accelerate the process of arriving at better problem descriptions and
solution methods. For example, by solving to completion NP-hard protein folding
problems we will be able to accurately parameterize force fields to be in line with
experimentally derived structures. Similar computational challenges lie at the
heart of many pressing scientific problems ranging from efficient biofuel
production to cancer treatment. The community of scientists and/or engineers that
would enthusiastically apply this information includes, but is not limited to,
computer scientists and engineers, biochemists, and chemical engineers. There is
significant potential for international collaboration and participation.

* How is the use of petascale computational modeling and simulation irreplaceable
in answering this question? Does it augment existing techniques or replace
them? Is there history of large-scale computation being the preferred approach
for this problem?

Petascale computational modeling and simulation is irreplaceable in all of these
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problems because current computational modeling and simulation simply cannot
handle problems of the desired size. This forces problems to be simplified and
limits their accuracy. Petascale computational modeling and simulation would
extend current techniques by expanding on what they can currently do or actually
allowing for entirely new analyses. There is a history of large-scale computation
being used to solve all of these problems.

*  Why are the other techniques (e.g., experiments/observation, more traditional
theory) that could answer these questions not satisfactory? Is it even feasible to
consider other techniques?

In many cases experiments/observations are limited by the vast combinatorial
nature of the problem at hand. In both protein and metabolic engineering an
astronomical number of choices exists that render direct “trial-and-error”
experimentation intractable. Only through the use of sophisticated modeling
coupled with efficient search algorithms novel solutions could be reached. Both
will be directly affected by petascale computations.

e What is the current status of the computing tools for the work being proposed:
mathematical models, algorithms, software, and data analysis tools? What is the
largest scale to date that codes have been run? (e.g. 1,000, 10,000, 100,000 cores)
Are there existing code teams working on codes for this problem area, or is this a
new area that would need seed investments?

To the best of my knowledge metabolic network modeling and optimization codes
have not been implemented as such scale. It will require some effort to identify
how to efficiently re-engineer existing codes and derive new ones to take
advantage of such computing power.

*  What experimental and observational data is there available to validate the
codes? Is the validation method well established ?

For all of these problems there exists extensive experimental information
available to use in validating the predictions. However, new experimental
progress will need to be made to reduce the time needed to (e.g., measure
metabolic fluxes, elucidate protein structures through NMR or Xray
crystallography).

*  What are the missing pieces in the areas of mathematical models, algorithms,
software required to solve the problem? How would you rank them in terms of
importance, cost, and risk?

Raw computing power will open the door to investigations that are considered
impossible nowadays (e.g., spatially and temporally accurate cellular simulation)
Sophisticated branch-and-bound methods for searching for optimal designs while
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exploiting petascale computing power will be central for the investigations in our
group.



Challenges: J. Reed
Integration of Omics Datasets:

Various ‘omics datasets aim to take measurements at a genome-scale. Gene expression data
often includes all open reading frames in a genome. Proteomic experiments often identify
hundreds of expressed proteins and their post-translational modifications. Hundreds of
metabolites can now be measured for single experimental condition [1]. Integration of
these datasets will be greatly facilitated by the development of computational models as
they can analyze both qualitative data as well as more quantitative measurements. The
integration of experimental data through modeling will be valuable for providing a better
understanding of cellular behavior. Since most of these ‘omics datasets include hundreds of
measurements, the models used to integrate and analyze this data must also capture large-
scale biological networks. The challenge is to develop large-scale computational models
that account for all the datasets being measured.

Kinetic models are able to connect metabolite and protein concentrations with metabolic
fluxes and can be used for both steady-state and dynamic analyses. To date, such models
are often limited to small networks or pathways [2]. Moving beyond kinetic models of small
networks requires the development of models containing hundreds of partial differential
equations with thousands of parameters (some of which are known and others unknown).
Methods for kinetic parameter estimation of large sets of parameters from experimental
data will be needed and will likely require large computing resources. In addition
simulation of the resulting large-scale kinetic models will also require significant
computing power and effective non-linear solvers.

Model Estimates of Intracellular Fluxes

Isotopomer models are another class of large-scale metabolic models, which are used to
estimate intracellular flux distributions using 13C labeling distributions of intracellular
metabolites when cells are grown on 13C labeled substrates [3]. For models capturing
central metabolism these models can have around 1,000 variables and 1,000 non-linear
constraints. For larger networks, which include biosynthetic pathways, the number of
variables and non-linear constraints grows rapidly, and can easily have over 10,000
variables and non-linear constraints [4]. To solve these types of models non-linear
optimization solvers have been used in addition to genetic algorithms [4, 5]. Recently, new
methods for formulating such models has led to improvements in solving for intracellular
flux distributions [6].

Multi-Organism Models (Modeling Microbial Interactions)

As the availability of microbial models grow, the next obvious step is to integrate individual
models into models of interacting organisms and/or communities of organisms. The scale
of these models will grow linearly with the number or microbes included. While models of
symbionts and their hosts have been modeled individually [7, 8] there are few genome-
scale models of both symbionts and hosts, with the exception of Desulfovibrio vulgaris and
Methanococcus maripaludas_[9]. Since organisms do not live in complete isolation, the
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development and analysis of community models will better reflect how microbial
communities interact and affect their environment.
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| see two main problems in computational modeling that will require i) high performance computing as
well as ii) algorithmic developments.

Stoichiometric models of metabolism play a key role in systems biology and are constructed and used by
many labs around the world. Linear, convex and mixed-integer type optimization problems arise in
connection with such models. New advances in this area include the stoichiometric modeling of non-
metabolic networks (e.g., signaling, regulation, macromolecular synthesis)’. In particular, a
macromolecular synthesis model for E. coli has been created accounting for ~400 gene, ~10k model
components, and ~14k model reactions’. This model is the largest and most complex biological model to
date. Subsequent integration of macromolecular synthesis with metabolism vyields into a rectangular
matrix (stoichiometric matrix) representing the functions of almost 2k E. coli genes, more than 60k
components and ~ 80k model reactions>.

With respect to latest LP solvers, the dimensions of the aforementioned stoichiometric matrix is small.
However, the matrix is also ill-scaled. That means that the entries of the matrix (stoichiometric
coefficients) are distributed over four orders of magnitude, whilst the corresponding variables (reaction
fluxes) vary over 7 orders of magnitude. The reasons for this ill-scaling issue are general and typical to
any biological system: (1) many metabolic precursors (nucleotides, amino acids) are required to form a
RNA species or a protein, and (2) metabolic reactions occur on a much faster timescale than
macromolecular reactions.

Solving a linear optimization problem for a typical metabolic model takes less than a second on a
standard PC (Dual core, Quad CPU, 2.83 GHz, 8 GB RAM, 32 bit). However, computing an optimal LP
solution for the integrated model of E.coli’'s metabolic and macromolecular synthesis network requires
up to 20 min on the same machine. Note that such problems cannot be solved with standard network
flow algorithms since matrix is not totally unimodular. Currently, only one software package is able to
solve an LP problem for the integrated metabolic and macromolecular synthesis network. However, this
software package is commercial, therefore one cannot gain insight into its methodology. The key step
seems to be in preprocessing/scaling to address the stiffness of the matrix. However, sometimes this is
not enough and the same solver will return infeasibility or numerically unstable results just by changing
the linear terms in the objective. Moreover, due to the slow computing time, prototyping new
approaches using LP is slow, and the sort of calculations routinely used for smaller matrices become
impractical, even on a small computing cluster. e.g. since multiple alternate optimal solutions exists,
sampling of alternate optimal solutions with slightly different objectives becomes impractical if each
takes 20 min to solve and 160k have to be solved.

New algorithms are needed to improve accuracy and speed of solving such optimization problems by (1)
improvement of preprocessing/scaling routines, (2) improved solvers which specifically take account of
the fact that a stoichiometric matrix defines the topology of a hypergraph, rather than an arbitrary



matrix, and (3) large scale MILP and convex optimization solvers tailored to stoichiometric matrices.
Often supercomputing resources exist, but are inaccessible to most, due to the need for special
supercomputing expertise. User friendly command line interfaces, for widely used modeling platforms,
such as MATLAB and Python, need to be developed to remotely leverage parallel supercomputing
resources from the desktop of computational biologists. First, supercomputing experts should work
with computational biologists to implement the most standard constraint based modeling techniques
which are trivial, and in wide use for metabolic networks, yet currently impractical for large networks.

Similarly, models of multiple cells or microbial communities will require more advanced techniques in
matrix pre-processing as well as in linear optimization algorithms. An average metabolic model accounts
currently for 1k to 3k reactions. The number of reactions and components of the community model is
expected to grow at least linearly with the number of cells. Furthermore, if non-metabolic functions, or
multicellular organism models, are also considered, it is clear that preparation must begin now in order
to prevent the numerical analysis bottleneck which will most certainly otherwise occur. Large-scale
multicellular models will require faster, more efficient algorithms that are able to capture the properties
of the individual cells within the community as well as the community behavior. Often the biological
objective of multicellular organisms is unknown. Here there is a requirement for unbiased approaches,
such as statistical sampling of convex and non-convex feasible sets, which allow for assessment of
candidate network states, without formulating a objective.

Considering the impact genome-scale, metabolic models had in many areas of biotechnology and
biomedicine, and the steadily increasing interest, it is expected that more complex, biological models
will have similar if not more profound impact. However, the use of these complex models will depend
on the availability and usability of computational algorithms that are able to reliably and efficiently solve
the resulting optimization problems, and also assess the significance of constraints when an objective is
not known a priori.
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