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A fundamental challenge in radiation research related to human health is to predict the 

biological impact of exposure to low dose (<0.1 Gy) ionizing radiation (IR).  Excess cancers 

have been observed in the Japanese atomic-bomb survivors at doses of 0.1 to 4 Gy, which are 

40 to 1600 times the average yearly background levels in the USA.  The excess risks vary 

significantly with gender, attained age, and age at exposure for all solid cancers as a group and 

many individual sites as a consequence of the atomic bomb (1).  It has been estimated that if 

radiation exposure occurs at age 30, the solid cancer rates at age 70 is increased by about 35% 

per Gy (90% CI 28%; 43%) for men and 58% per Gy (90% CI 43%; 69%) for women (1).  

However, predicting cancer risk in populations exposed to doses lower than ~0.1 Gy is limited 

by statistical considerations.   

The most recent review of the biological effects of ionizing radiation (BEIR VII, 2007) of the 

National Academy of Sciences concluded that human health risks continue in a linear fashion 

at low doses without a threshold such that the smallest dose has the potential to increase cancer 

risk.  The scientific rationale for linearly extrapolating radiation health effects is underpinned 

by biophysical theory of how energy interacts with DNA, which is thought to be the major 

biological target.  This area of radiation biology has made significant progress in identifying 

the critical mechanisms, processes and pathways by which DNA is damaged, repaired or 

misrepaired. The efficiency and frequency by which IR induces mutations and chromosomal 

aberrations is thought by most to be the best surrogate of its carcinogenic potential, in part 

because there is a clear mechanistic understanding of these genomic modifications via energy 

deposition, and because these events are strongly associated with cancer.  A fundamental 

principle of target theory is that the effect (e.g. DNA damage, cell kill, mutation) is linear or 

linear/linear-quadratic as a function of dose due to biophysical considerations that energy 

deposition (i.e. dose) is proportional to damage.   

However biological responses to DNA damage quickly evolve and amplify in a non-linear 

manner, particularly at low doses (reviewed in (2, 3). There are now myriad experimental 

reports that low dose radiation (1) alters the response of cells and tissues to subsequent 

challenge doses (i.e. adaptive responses, AR), (2) affects daughter cell fates such as 

differentiation and senescence, (3) induces long-range signals that affect non-irradiated cells, 

and (4) generates a state of chronic genomic instability (GIN). Although there are several 

definitions of non-targeted effects, we define non-targeted effects as those that are inconsistent 

with either direct energy deposition, such as bystander phenomenon (4-7), or those that are 

exhibited in the daughters of irradiated cells, but not mediated by a mutational mechanism, 

such as radiation-induced genomic instability (8-12) and persistent phenotypic changes (13-

16).  Although the extent to which these phenomena reflect different molecular mechanisms is 

not clear, experimental results to date suggest that significant deviation from linearity at low 

doses may impact the ability to predict cancer risk in humans (17-21).   

Our overarching hypothesis is that cancer emerges as a result of a complex, but ultimately 

predictable, interplay between targeted and non-targeted radiation effects in the context of host 

genetics and physiology (22, 23).  Just as DNA damage elicits a dramatic transition in 

signaling within a cell, each irradiated tissue has its own set of signals and cell types, distinct 

from those of un-irradiated tissue and different from other irradiated tissues.  The sum of these 

events, occurring in different organs and highly modulated by genotype, predicates the 

consequence to the organism.  Describing this complexity, identifying key mediators and 

predicting health outcomes for individuals requires new multiscale modeling of the biology in 

irradiated tissues.  



Opportunities in Biology at the Extreme Scale of Computing August 17-19, 2009 
M.H. Barcellos-Hoff, Tissue Breakout 

 

References 

1. Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 

1958-1998. Radiat Res 2007;168(1):1-64. 

2. Brooks AL. Paradigm Shifts in Radiation Biology: Their Impact on Intervention for 

Radiation-Induced Disease. Radiation Research 2005:454-61. 

3. Wright EG, Coates PJ. Untargeted effects of ionizing radiation: Implications for 

radiation pathology. Mutation Res 2006 2006/5/11;597(1-2):119-32. 

4. Kaplan HS, Carnes WH, Brown MB, Hirsch BB. Indirect Induction of Lymphomas in 

Irradiated Mice: I. Tumor Incidence and Morphology in Mice Bearing Nonirradiated Thymic 

Grafts Cancer Res 1956 June 1, 1956;16(5):422-5. 

5. Hei TK, Wu LJ, Liu SX, Vannais D, Waldren CA, Randers-Pehrson G. Mutagenic 

effects of a single and an exact number of alpha particles in mammalian cells. Proc Natl Acad 

Sci U S A 1997;94(8):3765-70. 

6. Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the 

expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 2000;60:1254-

60. 

7. Mothersill C, Rea D, Wright EG, et al. Individual variation in the production of a 

'bystander signal' following irradiation of primary cultures of normal human urothelium. 

Carcinogenesis 2001;22(9):1465-71. 

8. Kadhim MA, Lorimore SA, Hepburn MD, Goodhead DT, Buckle VJ, Wright EG. 

Alpha-particle-induced chromosomal instability in human bone marrow cells. Lancet 1994 

1994 Oct 8;344(8928):987-8. 

9. Kadhim MA, Lorimore SA, Townsend KM, Goodhead DT, Buckle VJ, Wright EG. 

Radiation-induced genomic instability: delayed cytogenetic aberrations and apoptosis in 

primary human bone marrow cells. Int J Radiat Biol 1995 1995 Mar;67(3):287-93. 

10. Kadhim MA, Macdonald DA, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG. 

Transmission of chromosomal instability after plutonium alpha-particle irradiation [see 

comments]. Nature 1992 1992 Feb 20;355(6362):738-40. 

11. Clutton SM, Townsend KM, D.T. G, J.D A, Wright EG. Differentiation and delayed 

cell death in embryonal stem cells exposed to low doses of ionising radiation. Cell Death 

Differ 1996 Jan;3(1):141-8. 

12. Limoli CL, Kaplan MI, Corcoran J, Meyers M, Boothman DA, Morgan WF. 

Chromosomal instability and its relationship to other end points of genomic instability. Cancer 

Res 1997 1997 Dec 15;57(24):5557-63. 

13. Herskind C, Rodemann HP. Spontaneous and radiation-induced differentiationof 

fibroblasts. Experimental Gerontology 2000 2000/9;35(6-7):747-55. 

14. Rave-Frank M, Virsik-Kopp P, Pradier O, Nitsche M, Grunefeld S, H. S. In vitro 

response of human dermal fibroblasts to X-irradiation: relationship between radiation-induced 

clonogenic cell death, chromosome aberrations and markers of proliferative senescence or 

differentiation. Int J Radiat Biol 2001;77:1163-74. 

15. Park CC, Henshall-Powell R, Erickson AC, et al. Ionizing Radiation Induces Heritable 

Disruption of Epithelial Cell-Microenvironment Interactions. Proc Natl Acad Sci 

2003;100(19):10728-33. 

16. Tsai KKC, Chuang EY-Y, Little JB, Yuan Z-M. Cellular Mechanisms for Low-Dose 

Ionizing Radiation-Induced Perturbation of the Breast Tissue Microenvironment. Cancer Res 

2005 August 1, 2005;65(15):6734-44. 



Opportunities in Biology at the Extreme Scale of Computing August 17-19, 2009 
M.H. Barcellos-Hoff, Tissue Breakout 

17. Baverstock K. Radiation-induced genomic instability: a paradigm-breaking 

phenomenon and its relevance to environmentally induced cancer. Mutat Res 2000;454(1-

2):89-109. 

18. Wright EG. Inducible genomic instability: new insights into the biological effects of 

ionizing radiation. Med Confl Surviv 2000;16:117-30. 

19. Barcellos-Hoff MH, Brooks AL. Extracellular signaling via the microenvironment: A 

hypothesis relating carcinogenesis, bystander effects and genomic instability. Radiat Res 

2001;156(5):618-27. 

20. Huang L, Snyder AR, Morgan WF. Radiation-induced genomic instability and its 

implications for radiation carcinogenesis. Oncogene 2003;22(37):5848-54. 

21. Little JB. Genomic instability and bystander effects: a historical perspective. Oncogene 

2003 Oct 13;22(45):6978-87. 

22. Barcellos-Hoff MH. Integrative radiation carcinogenesis: interactions between cell and 

tissue responses to DNA damage. Semin Cancer Biol 2005 Apr;15(2):138-48. 

23. Barcellos-Hoff MH. Cancer as an Emergent Phenomenon in Systems Radiation 

Biology. Radiat Env Biophys 2007 Feb;47(1):33-8. 

 

 



High Performance Computational Modeling of Neural Systems 
 
The human brain is the most complex system that we presently know, and the only such system that 
stands a realistic chance of understanding its own function.  In the past 50 years a combination of 
experimental studies, computational modeling and theory have produced remarkable progress in our 
understanding of the individual processing elements (neurons) and even of the function of some very 
simple circuits.  The last two decades have produced powerful new methods for the study and 
manipulation of large neural populations, at the level of cellular networks or extended brain systems. Our 
progress is now limited by the need to deal with more realistic (and more complex) neuronal models, and 
to accommodate the variety and sheer numbers of neurons and the connections between them. 
 
There are several areas of basic science, clinical medicine and engineering where high performance 
computational modeling is likely to have significant, even transformational impact: 
1)  Analyzing and interpreting experimental data from neural systems, typically requiring the coupling of 

neurophysiological and biophysical modeling techniques. 
2)  Exploring complex interactions within the system and predicting the consequences of intervention, 

e.g. by pharmacological treatment or electromagnetic stimulation. 
3)   Understanding information encoding and processing mechanisms that support neural computation, 

enabling synthetic sensory cognition, and neuromimetic and neuromorphic electronic systems. 
 
Each of these applications requires simulation across multiple spatial and temporal scales.  For example, 
neural simulations must incorporate geometrically realistic models of neurons, neural networks, and 
neural tissue to allow prediction of experimentally observable responses, including responses of 
individual cells, spatially resolved responses of networks of neurons provided by electrode arrays or novel 
optical imaging techniques, or the integrated, noninvasive  responses of large neural systems such as the 
electroretinogram (ERG), MEG or EEG, and functional MRI.  These methods are also needed to explore 
feasibility or to optimize proposed new methods for measurements of neural population response such as 
MRI techniques sensitive to neuronal currents, or optical tomography in scattering tissue. We need to 
develop capabilities to simulate the neural response to artificial stimulation by applied currents or 
magnetic fields as employed by emerging systems for electroneural prosthesis, in order to provide an 
engineering basis for the design of such systems. 
 
There are existing codes for neural simulation, including Neuron GENESIS, and the Los Alamos codes 
SENSE/PetANNET/PetaVision.  Taken together these provide many of the required basic capabilities.   
Some of these codes have already been applied in the HPC context; an early version of PetaVision was 
used to build a large network of integrate and fire neurons that was the first research code to achieve 
sustained petaflop performance on the Los Alamos Roadrunner computer.  However new high 
performance codes will be specifically designed for massively parallel computing, e.g. to deal with the 
characteristic patterns of dense local communication and arbitrary long range connections. The system 
should support hierarchical models (ion channels, subcellular structures, realistic cells, networks, tissues) 
spanning multiple spatial and temporal scales, and allowing simplified or more complete models 
depending on the requirements of the computational and scientific question. Embedded links to realistic 
models of cellular and tissue biophysics will allow us to predict experimental observables.   
 
Unlike invertebrate neural systems, which incorporate specialized neurons with very specific patterns of 
connections, vertebrate systems tend to employ generic neurons and patterns of connectivity that are 
modified as a function of use.  Because we cannot specify patterns of connectivity in detail, we must 
employ probabilistic, statistical descriptions of neuronal geometry, and of patterns and strengths of 
interconnection as a function of cellular type, geometric proximity, and patterns of activity.  The substrate 
for these extended circuits is laid down during development, but fine-tuned by patterns of spatial-
temporal covariance in activation during early experience.  



Given the complexity of large neural systems, computational models offer the only path to truly 
understand collective function.  However existing practices in neural modeling offer few tools or 
strategies to test and validate system models. To date, the most successful models account for detailed 
patterns of firing in individual cells or small networks.  We have access to new forms of data, from 
macroscopic physiological measurements and from simultaneous measurements of many neurons in 
parallel (for example from electrode arrays or dynamic optical imaging) which in principle can be used 
both to drive and validate model development.  However these require the development of coupled 
biophysical models beyond the scope of those presently employed. 
 
Given the numbers of parameters and elements in even simple models, it is difficult to optimize a model, 
or explore the parameter space, or to characterize how robust the behavior of the system might be.  We 
will need to incorporate and extend techniques developed for sensitivity estimation, adjoint computation, 
largescale optimization and probabilistic estimation of model parameters in large scale physics 
simulations such as climate modeling and mantle convection.  The explicit prediction of experimental 
observables based on network simulations will allow us to optimize large scale models to account for 
experimental data and to conduct critical tests of these models.  Characterizing the response of a large 
system and tracing the chain of causality that accounts for any observed response is also a substantial 
challenge which must be addressed. 
 
While interpreting observational data is an important role of HPC simulations, a more exciting 
objective is to enable systems for synthetic cognition (especially for front end encoding, processing 
and segmentation of environmental data) that achieves and eventually exceeds the speed, accuracy, 
flexibility and reliability of human sensory systems.  By identifying and emulating the computational 
principles and architectures of biological neural systems that enable their powerful and adaptive 
sensory interface to the external world, we can implement and explore neuromimetic systems using 
general-purpose parallel computing hardware.  Moreover, we anticipate that the essential capabilities 
will be implemented in more specialized processing architectures to allow application in the 
demanding operational environments posed by autonomous vehicles, remote sensing platforms and 
distributed surveillance environments.  Neuromorphic hardware, perhaps employing a suitable mix 
of analog logic and digital communications will allow us eventually to approach the remarkable 
specifications of size, weight and power that are achieved by biology.   
 
While many of the essential elements (e.g. progressively more specialized feature detectors embedded 
in hierarchical network architectures) already appear in state of the art, biologically inspired systems 
for machine vision, eventual solutions will incorporate features often neglected in such models:    
Spiking neurons and population encoding: Neurons spike, and to first order information is 

represented in the rate of firing.  However, the precise timing of individual spikes, especially 
relative to the timing of other spikes within a cohort of neurons, can serve as an additional 
independent representation of relationships with a data stream, which can be encoded and 
subsequently extracted in patterns of synchronous firing, coincidence, and coherence within a 
population of cells.   

Complex Architectures:  Biological networks employ extensive lateral interconnections between 
neurons and cortical areas as well as feedback pathways that allow the system to employ 
specialized cortical processing areas deeper in the pathway to fully exploit all available 
contextual cues.  These pathways also enable top down processing, to apply previously acquired 
world knowledge, in order to resolve ambiguities that are inevitably present in raw sensory input.  

Self-organization, Learning: Cellular learning is a key element of biological networks, both in the 
early development of feature-based representations and the networks that extract them, and in the 
continuous processes of adaptation and pattern recognition. We postulate that Spike Timing 
Dependent Plasticity (STDP) will give rise to many of the characteristic network architectures 
and information representations observed in neural systems 



 
The effort to understand the function of the brain will likely define the scientific legacy of this century, 
just as subatomic physics, the human genome project and the development of digital computation defined 
the last.  Reverse Engineering the Brain is one of the leading Grand Challenges identified by the National 
Academy of Engineering. This feld is likely to attract the concerted effort of neuroscientists; physicians 
and psychologists; physicists; material scientists; electrical, computer, and biomedical engineers; and 
computer and information scientists.  It has already attracted substantial interest and investment both 
within the US and across the world, and the effort will grow. 
 
A principal scientific objective is to understand the collective functional output and mechanisms 
employed by extended neural systems.  With the proposed computational tools we can probe the 
algorithms employed by these complex systems, with the possibility of testing and validating models 
through experimental studies. Such computational tools will enable a number of applications of identified 
interest to DOE and to the nation. Tools for computational simulation of biophysical responses will 
enable fundamentally new paradigms for the interpretation of data provided by noninvasive techniques 
for functional imaging and will allow us to critically assess the prospects for enhanced and even 
revolutionary techniques. Models of biological networks are likely to prove critical for optimal 
information processing for neural prosthetic systems such as the DOE Artificial Retina.  The 
understanding that we glean from high-resolution models has the potential to revolutionize systems for 
machine vision employing biomimetic algorithms and architectures, as well as systems for the precise and 
predictive control of actuators and mobility platforms.  These building blocks will be used to assemble 
engineered systems capable of autonomous operation, including sensory processing and internal state 
monitoring, adaptation and learning, communication and self-repair.  Such systems will enable important 
new classes of applications with transformational economic and national security impact, ranging from 
analysis of satellite or ground-based surveillance imagery, to autonomous vehicles and agents, to 
distributed sensor networks for border security, nonproliferation, and critical infrastructure monitoring. 
 



Narrative for the Blue Brain Project presentation 
Sean Hill and Felix Schürmann 
 
The Blue Brain Project aims to simulate an entire human brain of approximately 100 
billion neurons and over 10 trillion synapses at the cellular level for basic and medical 
research. Ultimately, this simulation should be adapted to an individual patient to 
provide personalized treatment. Currently, there is no drug for which the brain‐scale 
effect is understood. The effectiveness of many pharmacological agents depends on the 
unique configuration of an individual brain and which receptors and ion channels are 
coded for in each individual’s DNA. Similarly, individual variations in development and 
experience can influence the organization and functioning of the brain. By integrating 
genetic, functional and structural data from an individual patient, the model brain can 
provide personalized medicine and therapeutics, increasing the likelihood of successful 
treatments and reducing negative secondary effects. 

 
The simulation of an entire human brain at the cellular level of detail will require an 
estimated 1 exaflop of computation. The simulation of this whole brain model would 
occur at the electrical level of detail – capturing the dynamics of ion channels and 
synapses distributed across 100 billion unique neurons. The molecular‐scale activity of 
gene expression, biochemical signaling, protein‐protein interactions, the vasculature, 
glial cells, ion channels, receptors and synapses would be linked to the electrical and 
cellular scale, capturing the effect of pharmacological agents. Thus, simulation of large‐
scale molecular‐level models as well as large‐scale cellular brain‐scale models is 
required. 
 
To iteratively approach simulations at the human brain scale, the Blue Brain toolchain 
will be extended to build models of rat, mouse, cat and primate brains. Recently, the 
project has completed a functioning prototype of the neocortical column – the template 
circuit of the neocortex, which consists of 10,000 physiologically detailed three‐
dimensional neurons and 30,000,000 synapses based on data from the somatosensory 
cortex of the young rat and simulated on a 8,192 core 4‐rack BlueGene/L system. 
Currently, the Blue Brain Project is working toward the goal of simulating an entire rat 
brain on a petascale supercomputer. An entire toolchain for databasing, building, 
simulating, visualizing and analyzing the neocortical column has been developed and is 
being used to continually validate the model while integrating additional experimental 
measurements.  
 
Biological experimental data provides the key validation criteria for the simulations and 
providing an interactive environment for the neuroscience community will provide an 
important means for ongoing validation and refinement of the model. The present 
process includes validating all models by replicating experimental protocols and data 
including: ion channels, neuron firing behavior, synapses, dendritic integration, 
morphological parameters, connectivity, polysynaptic loops and emergent network 
activity.  



 
Whole brain simulation is a new field and only recently have claims been made of 
simulating brain‐scale systems. In contrast to modern physics simulations, the precise 
benchmarks for what constitutes a valid whole brain simulation and accepted measures 
to characterize computational efficiency have not yet been established. Furthermore, 
the canonical algorithms and simulation architectures for establishing whole brain 
simulations are still under development. The Blue Brain Project is working to establish 
the canonical algorithms and benchmarks for detailed physiological simulations at the 
whole brain level, in close collaboration with the author of NEURON, Michael Hines. 
However, there remains much work to establish a community for verification, validation 
and performance of whole brain simulation architectures. 
 
In the first phase of the Blue Brain Project we saw that in addition to the simulator a 
tremendous attention needs to be paid to integrate databasing of the source data with 
construction of the model, simulation of the model, and analysis of the model in a way 
that a domain‐scientist (not an HPC expert) can operate and understand it. While each 
of the technical domains in the peta and exascale range represent solid challenges by 
themselves, only the combination with the application domain, in our case 
neurobiology, will allow consistency, validation and eventually the much needed impact 
for personalized medicine. 
 
In addition to the advancements in computing, such a project will necessarily involve 
international scientific collaborations and industrial scale data acquisition. 
 



Michael Hines

Large scale spiking neural network simulations

Computational Neuroscience aims to understand learning and behavior
through simulaton of the cells and massive cell connectivity that
comprise the nervous system.  Models are necessarly simplified since the
number of cells in the human brain exceeds 100 billion and number of
connections exceeds tens of trillions.  Each cell has a complicated tree
shape and the cell membrane is also very complex, incorporating hundreds
of distinct ion channels and activity dependent biochemical kinetics. 

From the viewpoint of communication, large scale spiking neural networks
consist of computational units called neurons connected by one-way delay
lines to many other neurons.  Neurons generate logical events, called
spikes, at various moments in time, to be delivered to many other
neurons with some constant propagation delay which can be different for
different connections.  Neurons generally send their spikes to thousands
of neurons and receive spikes from thousands of neurons.  During time
intervals between input events, the neuron is typically defined by a
system of continuous ordinary differential equations along with a
threshold detector which watches one of the states and determines when
the output event is generated. 

Spiking neural network models vary greatly in the computational
complexity of their neurons.  The Blue Brain project for example uses
neuron models derived from 3-d reconstructions of large dendritic trees
with complex membrane properties due to the presence of several dozen
types of nonlinear voltage gated channels selective to the passage of
sodium, potassium, and calcium, and whose permeability is also sensitive
to the calcium concentration adjacent to the internal surface of the
membrane.  The largest cell in the Blue Brain project's 10,000 cell
neocortical column model is represented using approximately 40,000
coupled ODE's.  More typical are simplified nonlinear conductance based
single compartment models described by a few to a dozen or so equations. 
Also commonly used, and the least computationally expensive, are
abstract ``integrate and fire" models which have simple closed form
solutions for their states between events.  Such models do not require
numerical integration of equations but involve updating their state
variables only at input events based on their state at the previous
input event.  Of course, the simpler the neurons, the larger the network
that can be simulated with a given resource, and it is not unusual for
models to contain millions of neurons with a total of billions of
connections.  Nevertheless, the neurons are sparsely connected.  Also,
such networks remain small when compared to the number of neurons in
mammalian brains. 



The fastest spike communication method on supercomputer clusters of
order ten thousand processors is also the simplest and is based on the
MPI\_Allgather collective.  The allgather method, used by the NEURON
simulator as well as other simulators, is based on the fact that network
connection delay intervals, typically in the neighborhood of 1 ms, which
generally includes axonal and synaptic delay, are generally quite large
compared to integration time steps, typically 0.1 ms or smaller, and
small compared to interval between spikes of a single neuron, at least
1ms and typically 10--1000 ms.  The computations are segregated into
integration intervals which are less than or equal to the minimum
interprocessor network connection delay.  Therefore any spike generated
in an interval does not have to be delivered to the target cells until
after the end of that interval.  All processors work on the same
interval, synchronizing only at the end of the current integration
interval.  Spikes generated by cells on a given processor are stored in
a buffer list of (cell identifier, spiketime) pairs and, at the end of
an integration interval, the spike count in the buffer along with a
fixed size portion of each buffer is exchanged with every other
processor using MPI\_Allgather.  If the number of spikes is larger than
the fixed size buffer, the overflow is sent using MPI\_Allgatherv. 

For less than ten thousand processors, most processors need most spikes,
and so allgather performance is usually better than when using point to
point exchange methods.  However, above that range, i.e.  above the
ceiling on number of connections per cell, four considerations suggest
that the allgather will exhibit poor scaling for very large neural
network simulations which, nevertheless, have sparse cell to target
processor connectivity.  First, MPI\_Allgather itself requires twice the
time when the number of processors double.  Second, all incoming
processor buffers must be examined for spikes, even if the spike count
for a given source processor is 0.  Third, every incoming spike requires
a search in a table for whether or not the spike is needed by at least
one cell on the processor.  Fourth, it is not possible to overlap
computation and communication.  None of these issues apply to point to
point exchange methods using non-blocking sends.  As an aside, it is
worth noting that because of the biological ceiling on number of
connections to a neuron for very large network models, event queue size
also begins to scale with the number of cells per processor and so
exhibits strong scaling behavior. 

Performance tests comparing the allgather and multisend method on a Blue
Gene/P for a 256K cell random artificial net show that, for 1k
connections per cell, runtime is the same on 8K processors but the
multisend method continues to scale linearly up to the largest number
(32K processors) we used whereas runtime begins to increase with the



allgather method between 16K and 32K processors.  For 10k connections
per cell, MPI_Allgather continues to have better performance, even with
32K processors, than a multisend method that utilizes the persistent
DCMF_Multicast (Deep Computing Messaging Framework) implemented using
remote direct memory access.  Trends show an expected turnover at 64K
processors. 

Thus, the computational neuroscience community is well placed to take
advantage of the coming availability of very large parallel computers
and it seems likely that incremental improvements in existing load
balance and spike exchange methods will allow efficient use of machines
consisting of millions of processors.  At such scales, it will probably
be necessary to roughly distribute the neurons in a fashion
topographically similar to the biological arrangement so as to keep
connectivity as local as possible to avoid unnecessary sharing of
interprocessor bandwidth.  The multisend method will undoubtedly benefit
from a machine specific implementation that avoids sending 10K messages
from the source processor to the target processors for each spike in
favor of a more distributed transmission method that takes advantage of
the fact that biological delay is greater when cells are farther away. 



Towards A Full Brain Model

The dynamics of blood flow in the human brain depend upon a complex network of vessels under a
variety of temporal and spatial constraints. Abnormalities in the delivery of blood to the brain clearly
underlie the pathophysiology of stroke, vasospasm, traumatic brain injury, vascular dementias, and
probably conditions such as migraine and hydrocephalus. Clinical decisions are often made on the
basis of steady state conditions (e.g., mean intracranial pressures, mean cerebral blood flow, etc),
but there is clearly a risk that ignoring the range of spatial and temporal scales present may limit
understanding, and hence clinical effectiveness. Exascale computing can facilitate the development
of computational multiscale models of the cerebral vasculature that includes all blood vessels from
the circle of Willis to the arterioral tree, to the capillary bed, and even detailed spectrin-level models
of the red blood cell (RBC). An even more exciting prospect is the new possibility of a full brain
model coupling of the neuronal and vascular trees that will lead to understanding and treatment
of devastating diseases such as Alzheimer’s, meningitis and multiple sclerosis. A full-scale model
with patient-specific geometry and conditions at all scales, including spectrin-level RBC models,
will facilitate physiologically correct simulations of brain perfusion and associated pathologies (e.g.,
malaria, sickle cells anemia) for realistic future studies.

A Multiscale Brain Vascular Model – The cardiovascular system of the human body
is the envy of every engineer. In just one minute, the average heart beats about 70 times, pumping
the entire blood supply of 5 liters through 62,000 miles of vessels, that is one-fourth of the distance
between the Moon and the Earth! The human brain, in particular, although less than 2% of the
body weight, receives about 20% of the resting cardiac output of blood and 25% of the body’s oxygen
supply [1]. Interactions of blood flow in the human brain occur between different scales, determined
by flow features in the large arteries (diameter of 0.5 mm or larger), the smaller arteries and arterioles
(500 µm to 10 µm), and the capillaries (mean diameter of 5 µm) – all being coupled to cellular and
sub-cellular biological processes. While many biological aspects have been studied systematically,
surprisingly less effort has been put into studying blood flow patterns and oxygen transport within
the brain, i.e., the fundamental biomechanical processes of the integrated vascular network. However,
recent pioneering 3D imaging of the human brain by Cassot et al. in [2] and of the mouse brain by
Choe et al. [3] provides statistical information for constructing realistic topological models on which
future brain simulations will be based. The main observation is that arterioles down to 10 µm follow
a tree-like structure (governed by a fractal law) whereas the capillary bed (below 10µm) follows a
net-like structure, i.e., a mesh, see figure 1.

Exascale computing can facilitate the development of an integrated model of the vascular network
in the human brain (cerebrovasculature) characterized by three distinct spatial length scales (see figs.
1 and 2):
(1) The macrovascular network (MaN) consisting of large arteries, down to diameter of 0.5 mm,
which are patient-specific and can be reconstructed from CT/MR imaging. Typically, about 1001

such arteries start from the circle of Willis, which is formed downstream of the four main arterial
inlets at the neck (two carotids and two vertebral arteries).
(2) The mesovascular network (MeN) consisting of small arteries and arterioles, from 500 µm down
to 10 µm, which follow a tree-like structure governed by specific fractal laws [2, 5]. The human brain
contains about 10 million2 small arteries and arterioles.
(3) The microvascular network (MiN) consisting of the capillary bed, which follows a net-like struc-

1Due to arterial variations in a human this number is patient-specific [4].
2The number of vessels stated here is computed based on Murray’s law [6, 7] with a modified index (q = 2.5) and

asymmetric structure.
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Figure 1: Schematic of multiscale modeling of the cerebrovasculature: Left - MaN: Large arteries and circle of

Willis (our data). Middle - MeN: Arteriolar tree model ([5]). Right - MiN: Capillary bed ([2]). The different

colors in MaN represent the different “pathches” in the two-level domain decomposition method (see “Technical

Approach”). The geometry is described statistically in MeN/MaN.

6mm 0.5mm 10 µm < 10 µm

    Macrovascular Network  
 (MaN): Large Arteries (100)

   Mesovascular Network 
 (MeN): Arteriolar Tree (10M)

   Microvascular Network 
  (MiN): Capillary Bed (1B) 

          3D 
 Navier−Stokes

1D Stochastic 
  PDE Model

 * Stochastic Darcy’s Law 
 * DPD Modeling → K

eff

Figure 2: Coupling of MaN-MeN-MiN and corresponding mathematical models. The numbers in parenthesis

show the approximate number of vessels; Keff denotes an “effective” permeability of the capillary bed, which

will be extracted via upscaling of DPD simulation results obtained on stochastic replicas.

ture; its topological statistics have been recently quantified for the human brain in [2]. The typical
number of capillary segments in the brain is more than 1 billion.

More comprehensively, the simulations can be divided into two regimes: The first one involves all
arteries that can be accurately imaged clinically at the present time (see (1) above and preliminary
results in figure 3), whereas the second regime involves the “subpixel” dynamics as described by (2)
and (3) above.

There are three main reasons for coupling all three networks and not simply model MaN as in
figure 3: (1) to provide a closure for MaN modeling, and (2) to model brain perfusion, and (3) to
form the foundation for neurovascular coupling and modeling of the blood-brain-barrier (BBB).

A Multiscale Neuro-Vascular Model – While for many years the study of ischemic
brain injury and repair focused on the neural tissue, translating these laboratory results into clinically
effective stroke treatments or diagnosing the early onset of Alzheimer’s disease, still remain major
challenges. It is now recognied that even relatively small changes in blood flow propagate downstream
in veins and can give rise to spurious activation of sites remote from neoronal activity.

A rational approach to meet these challenges starts by considering the “neurovascular unit” (NVU)
concept, see figure 4, which encompasses the cellular and functional interactions among the capillar-
ies, glia, and neurons of the brain [8]. Targeting the NVU based on biological considerations provides
an integrative view to ischemic brain damage which may be closer to the clinical reality. By em-
ploying data from Magnetic Resonance Imaging (MRI), computational models can be developed that
simulate the changes in NVU in vivo in order to understand the integration of cerebrovascular and
neurobiological mechanisms in patients with severe ischemic stroke or degenerative disease. Exaccale
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Figure 3: MaN simulations involving a “complete” Circle of Willis consisting of 65 arteries. Colors represent

pressure (inner part is transparent to show velocity vectors and not pressure levels) arrows velocity, XY plots

depict flowrate in ml/s and pressure drop ∆P in mmHg. Top right: instantaneous streamlines shown swirling

flow in communicating arteries. Bottom right MRA image of the cranial arterial system provided by our

collaborator Dr. J.R. Madsen (Harvard Medical School).

computing can facilate the development and implementation of such models and in particular the
scaling up of a single unit to a representative region of a human brain.

An Exascale Application – Based on detailed estimates and ongoing simulations in our
group, we can project that a sustained 10 Petaflops performance can lead to MaN-MeN coupled
simulations of the full brain within 24 hours. On the other hand, simulating MiN requires atomistic
(mesoscopic) approaches to capture the RBC dynamisc accurately in the cappilary bed and for 1
billion cappilaries we estimate that we will require simulations with 1013 particles, which can be
performed efficiently on a a 10-100 Petaflops platform. Taken together these estimates along with
estimates for running NEURON to account for neurovascular coupling, we can project that an exaflop
(1000 petaflops) sustained performance will lead to the first ever simulation of a full brain.
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Figure 4: Neurovascular coupling: Flow in the cappilaries and associated brain perfusion are strongly coupled
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Research Interests and Challenges

The work of the systems software group in MCS includes providing high performance I/O and storage soft-
ware for parallel applications, where concurrent, large I/O and many file accesses are common. Leadership
class storage systems today provide aggregate I/O rates in the range of 50-100 gigabytes per second to files
often as large as a few terabytes. [2] Storage systems of the future will likely be an order of magnitude larger,
but only a few times faster due to the physical limits of the hardware. We are investigating new approaches
to storage software that allow applications to reach the I/O limits of next generation systems.

Research in parallel I/O software has traditionally focused on parallel applications in application domains
other than computational biology, such as climate modeling or astrophysics simulations. But recent research
in computational biology has begun to utilize high performance I/O techniques for improving the perfor-
mance of sequence search. [3] As the I/O and data requirements of computational biology applications
increase, new approaches to high performance I/O will be needed. More efficient access to many small files
will become important. [1] Active storage models will become increasingly important as well, allowing ap-
plications to reduce the I/O bandwidth requirements of the system by performing much of the computation
where the storage is located, improving data locality. [5, 4] Further research on active storage techniques
integrated within parallel file systems is needed to understand the role that it can play at extreme scales on
improving the overall performance of computational biology applications.

Many of the challenges to improved I/O performance for computational biology at extreme scale are in the
gap between the I/O patterns that applications prefer, and the larger I/O patterns that get the best perfor-
mance on leadership-class storage systems. Many open questions still remain. Will leadership-class systems
of tomorrow provide the bandwidth and capacity necessary to tackle the hardest problems in computa-
tional biology? Can evolving models for improved locality of computation and storage be utilized within
the domain of computational biology? Can interfaces to storage be built that give computational biology
applications more efficient data access? These are some of the challenges we focus on and hope to tackle
for biology applications running at extreme scale.
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 My laboratory is focused on two major areas of research:  The first involves 
studies of irradiation on the development of late tissue toxicities including cancer.  For 
this project, we have available to us both the dataset, paraffin embedded tissues, and 
pathology records from over 49,000 mice and 7,000 dogs that were exposed to varying 
doses of radiation of different qualities and given at different dose rates.  We are 
currently analyzing data from the datasets for a better understanding of late tissue 
toxicities and tissues from the archive to understand basic mechanisms of radiation 
effects.  The second project involves the development of nanoparticles that can be used 
for cancer imaging and therapy.  These nanoparticles are of different sizes, shapes and are 
modified with different biological materials to permit targeting in biological systems. 
 Based on my experience there are several challenge areas that arise for modeling.  
With regard to radiation studies, there are a few groups that are trying to model the 
interaction of radiation with DNA and other subcellular components.  Few have been able 
to build up to the full cell level much less the tissue and organism level.  If effects of 
radiation can be modeled on tissues, this would have dramatic impact for radiation 
oncologists who are trying to avoid radiation toxicity in normal tissues while they are 
treating tumors.  Modeling of the effects of different radiation qualities on tissue 
toxicities and other secondary endpoints would also be of value; low LET radiations such 
as gamma-rays and x-rays would be of value to most clinicians.  The recent development 
of p+ beams for therapy has increased demand for understanding tissue toxicities 
following such treatments.  NASA is concerned about space radiation effects including 
radiation from solar particle events (mostly p+) and galactic cosmic rays (mostly high Z 
radiation).  Finally, being able to model the interaction of radiation with different 
toxicities would be of benefit to a broad community.  Radiation is associated with many 
environmental toxins in waste sites including heavy metals and others.  Radiation is 
usually administered with chemotherapeutic agents in the clinic, and the interactions are 
often not predictable. 
 From the nanotechnology perspective, much funding and work is going into 
understanding effects of toxicities of nanoparticles.  Right now, each nanoparticle is 
being tested one by one in investigators’ labs and at the NanoCharacterization Lab in 
Frederick, MD.  Some ability to model how size, shape, biological modification, etc. will 
affect the toxicities of each nanoparticle would be of tremendous benefit to the field and 
would enhance the ability to move this work from the research lab into the clinic.  
Prediction of trafficking in animals and humans would be of value particularly since so 
many nanoparticles are being developed for imaging purposes.  Some nanoparticles enter 
tumors by the enhanced permeability and retention mechanism which occurs because of 
leaky vasculature in tumor cells; others are specifically targeted to tumor cells.  Being 
able to model this would be of great use to the imaging and therapy communities.  In 
addition, there are current concerns about nanoparticle contamination from synthesis and 
from environmental concerns which would also be impacted by modeling capabilities. 




